Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T05:03:27.764Z Has data issue: false hasContentIssue false

Mimicking the Formation of Biomineral Composites through Deposition of Calcium Carbonate Thin-Films on Modified Fiber Net Templates

Published online by Cambridge University Press:  15 February 2011

Parayil Kumaran Ajikumar
Affiliation:
Singapore-MIT Alliance
Rajamani Lakshminarayanan
Affiliation:
Department of Chemistry, National University of SingaporeSingapore, 117543
Valiyaveettil Suresh
Affiliation:
Singapore-MIT Alliance Department of Chemistry, National University of SingaporeSingapore, 117543
Get access

Abstract

Thin films of calcium carbonate were deposited on the surfaces of synthetic substrates using a simple biomimetic pathway. The Nylon 66 fiber knit pre-adsorbed with acidic polymers was used as a template for the controlled deposition of CaCO3 thin film. The presence of the soluble macromolecules on the fiber knit surface was characterized using ATR-FTIR spectroscopy. The characterization of the mineral films was carried out using scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive Xray scattering (EDX) studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, B. and G. Wilkes, L. J. Macromol. Sci.- Pure and Appl. Chem. 31, 249 (1994).Google Scholar
2. Calvert, P., and Rieke, P., Chem. Mater. 8, 1715 (1996).Google Scholar
3. Arias, J. L. Fink, D. J. Xiao, S. Q. Heuer, A. H. and Caplan, A. I. Int. Rev. Cytol. 145, 217 (1993).Google Scholar
4. Reimschussel, H. K. Handbook of Fiber Chemistry, ed. Lewin, M. and Pearce, E. M., (Marcel Dekker 1998), pp 84.Google Scholar
5. Addadi, L. and Weiner, S., Nature, 389, 912 (1997).Google Scholar
6. Kamat, S., Su, X., Ballarini, R., and Heuer, A. H. Nature, 405, 1036 (2000).Google Scholar
7. Lichtenegger, H. C. Schoberl, T. Bartl, M. H. Waite, H. and Stucky, G. D. Science, 298, 389 (2002).Google Scholar
8. Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L., and Hendler, G., Nature, 412, 819 (2001).Google Scholar
9. Smith, B. L. Schaffer, T. E. Viani, M. Thompson, J. B. Frederick, N. A. Kindt, J. Belcher, A., Stucky, G. D. Morse, D. E. and Hansma, P. K. Nature, 399, 761 (1999).Google Scholar
10. Gower, L. A. Tirrel, D. A. J. Crystal Growth, 191, 153 (1998)Google Scholar
11. Gower, L. B. Odom, D. J. J. Crystal Growth, 210, 719 (2000).Google Scholar
12. Dujardin, E. and Mann, S., Adv. Eng. Mater. 4, 461 (2002).Google Scholar
13. Addadi, L., and Weiner, S., Angew Chem. Int. Ed. Engl. 31, 153 (1992).Google Scholar
14. Kato, T., Sugawara, A., and Hosoda, N., Adv. Mater. 14, 869 (2002).Google Scholar
15. Kato, T., Adv. Mater. 12, 1543 (2000).Google Scholar
16. Hosoda, N., and Kato, T., Chem. Mater. 13, 688 (2001).Google Scholar
17. Valiyaveettil, S., Lakshminarayanan, R., Polym. Mater. Sci. Eng. 84, 798 (2001).Google Scholar
18. Kitano, Y., Bull. Chem. Soc. Jpn. 35, 1973 (1962).Google Scholar
19. Addadi, L., Moradianoldak, J., and Weiner, S., ACS Symp. Ser. 444, 13, (1991).Google Scholar