Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T14:32:50.106Z Has data issue: false hasContentIssue false

Mimicking the Extracellular Matrix: Tuning the Mechanical Properties of Chondroitin Sulfate Hydrogels by Copolymerization with Oligo(ethylene glycol) Diacrylates

Published online by Cambridge University Press:  16 January 2014

Anahita Khanlari*
Affiliation:
Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, United States
Tiffany C. Suekama*
Affiliation:
Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, United States
Michael S. Detamore*
Affiliation:
Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, United States
Stevin H. Gehrke*
Affiliation:
Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, United States
Get access

Abstract

Chondroitin sulfate (CS) is one of the major glycosaminoglycans (GAGs) present in the connective tissue extracellular matrix (ECM) and is responsible for the regulation of cellular activities as well as providing mechanical support for the surrounding tissue. Due to presence of CS in the natural tissues including cartilage, hydrogels of CS and other GAGs have been widely used in cartilage regeneration. Due to their polyelectrolyte nature, GAG-based hydrogels are brittle and require modifications to overcome the weak mechanical properties. In this work, we showed copolymerization of methacrylated chondroitin sulfate with oligo(ethylene glycol)s improved the crosslink density of the gels from 2 to 20 times depending on the methacrylation degree of CS and length of the crosslinking monomer. Copolymerization of CS with oligo(ethylene glycol) acrylates is a method to design hydrogels with tunable swelling and mechanical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balakrishnan, B. and Banerjee, R., Chem. Rev. 111, 44534474 (2011).CrossRefGoogle Scholar
Van Vlierberghe, S., Dubruel, P. and Schacht, E., Biomacromolecules (2011).Google Scholar
Li, Q., Williams, C. G., Sun, D. D. N., Wang, J., Leong, K. and Elisseeff, J. H., J. Biomed. Mater. Res. Part A 68, 2833 (2004).CrossRefGoogle Scholar
Cha, C., Kim, S. Y., Cao, L. and Kong, H., Biomaterials 31, 48644871 (2010).CrossRefGoogle Scholar
Mansour, J. M., in Kinesiology: the Mechanics and Pathomechanics of Human Movement, ed. Oatis, C. A., Lippincott Williams and Wilkins, Philadelphia, PA, 2nd edn., 2008, vol. 2, pp. 6983.Google Scholar
Forget, A., Christensen, J., Lüdeke, S., Kohler, E., Tobias, S., Matloubi, M., Thomann, R. and Shastri, V. P., Proceedings of the National Academy of Sciences 110, 1288712892 (2013).CrossRefGoogle Scholar
Bryant, S. J. and Anseth, K. S., J. Biomed. Mater. Res. Part A 64, 7079 (2003).CrossRefGoogle Scholar
Bryant, S. J., Bender, R. J., Durand, K. L. and Anseth, K. S., Biotechnol. Bioeng. 86, 747755 (2004).CrossRefGoogle Scholar
Wang, D. A., Varghese, S., Sharma, B., Strehin, I., Fermanian, S., Gorham, J., Fairbrother, D. H., Cascio, B. and Elisseeff, J. H., Nat. Mater. 6, 385392 (2007).CrossRefGoogle Scholar
Li, Q., Wang, D. and Elisseeff, J. H., Macromolecules 36, 25562562 (2003).CrossRefGoogle Scholar
Chen, J., Jo, S. and Park, K., Carbohydr. Polym. 28, 6976 (1995).CrossRefGoogle Scholar
Bryant, S. J., Arthur, J. A. and Anseth, K. S., Acta Biomater. 1, 243252 (2005).CrossRefGoogle Scholar
Ingavle, G. C., Dormer, N. H., Gehrke, S. H. and Detamore, M. S., Journal of Materials Science: Materials in Medicine, 1-14 (2012).Google Scholar
Khanlari, A., Detamore, M. S. and Gehrke, S. H., Submitted to Macromolecules (2013).Google Scholar
Suekama, T. C., Hu, J., Kurokawa, T., Gong, J. P. and Gehrke, S. H., ACS Macro Lett. 2, 137140 (2013).CrossRefGoogle Scholar
Suekama, T. C., Berkland, C. and Gehrke, S. H. in Interpenetrating network hydrogels based on poly (N-vinylformamide) and polyacrylamide with controlled charge complexation, (245, 2013) Google Scholar
Ingavle, G. C., Frei, A. W., Gehrke, S. H. and Detamore, M. S., Tissue Eng., Part A 19, 13491359 (2013).CrossRefGoogle Scholar
Treloar, L. R. G., The Physics of Rubber Elasticity, Oxford University Press, New York, NY, (Oxford University Press, 2009).Google Scholar
Flory, P. J., Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, (Cornell University Press, 1953).Google Scholar
Nichol, J. W., Koshy, S. T., Bae, H., Hwang, C. M., Yamanlar, S. and Khademhosseini, A., Biomaterials 31, 55365544 (2010).CrossRefGoogle Scholar
Bencherif, S. A., Srinivasan, A., Horkay, F., Hollinger, J. O., Matyjaszewski, K. and Washburn, N. R., Biomaterials 29, 17391749 (2008).CrossRefGoogle Scholar
Bonino, C. A., Samorezov, J. E., Jeon, O., Alsberg, E. and Khan, S. A., Soft Matter 7, 1151011517 (2011).CrossRefGoogle Scholar
Cook, W. D., J. Polym. Sci., Part A: Polym. Chem. 31, 10531067 (1993).CrossRefGoogle Scholar
Landin, D. and Macosko, C., Macromolecules 21, 846851 (1988).CrossRefGoogle Scholar