Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:34:23.023Z Has data issue: false hasContentIssue false

Microwave-assisted Synthesis of Perylene-3,4-dicarboximides: Highly Photostable Fluorescent Dyes

Published online by Cambridge University Press:  01 February 2011

Brian Guthrie
Affiliation:
[email protected], Arizona State University, School of Materials and Advanced Photovoltaics Center, 7700 S River Parkway, Tempe, AZ, 85284, United States
Zixing Wang
Affiliation:
[email protected], Arizona State University, School of Materials, 7700 S River Parkway, Tempe, AZ, 85284, United States, 480-965-2612, 480-727-8965
Jian Li
Affiliation:
[email protected], Arizona State University, School of Materials and Advanced Photovoltaics Center, 7700 S River Parkway, Tempe, AZ, 85284, United States
Get access

Abstract

A new method for synthesis of perylene-3,4-dicarboximides (PDCIs) is reported. Modified from a literature reported synthetic method, microwave assisted heating was used to perform the reaction, which not only shortened the original reaction time, from 18 hours to 30 min, but also increased the corresponding reaction yield. A variety of PDCI derivatives were synthesized in order to correlate the influence of substituents on the reaction outcome. Moreover, the photophysical and electrochemical properties of PDCIs are characterized and reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.For a review see: Langhals, H. Heterocycles 1995, 40, 477.Google Scholar
2. Yang, S. I. Lammi, R. K. Prathapan, S. Miller, M. A. Seth, J. Diers, J. R. Bocian, D. F. Lindsey, J. S. Holten, D. J. Mater. Chem. 2001, 11, 2420.Google Scholar
3. Gosztola, D. Niemczyk, M. P. Svec, W. Lukas, A. S. Wasielewski, M. R. J. Phys. Chem. A 2000, 104, 6545.Google Scholar
4. Hermann, A. Müllen, K., Chem. Lett. 2006, 35, 978.Google Scholar
5. Samori, P. Fechtenkotter, A. Reuther, E. Watson, M. D. Severin, N. Müllen, K., Rabe, J. P. Adv. Mater. 2006, 18, 1317.Google Scholar
6. Quante, H. Müllen, K., Angew. Chem. Int. Ed. Engl. 1995, 34, 1323.Google Scholar
7. Nolde, F. Qu, J. Kohl, C. Pschirer, N. G. Reuther, E. Müllen, K., Chem. Eur. J. 2005, 11, 3959.Google Scholar
8. Cremer, J. Mena-Osteritz, E., Pschierer, N. G. Müllen, K., Baeuerle, P. Org. Biomol. Chem. 2005, 3, 985.Google Scholar
9. Tam-Chang, S., Seo, W. Iverson, I. K. J. Org. Chem. 2004, 69, 2719.Google Scholar
10. Feiler, L. Langhals, H. Polborn, K. Liebigs Ann. 1995, 1229.Google Scholar
11. Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250.Google Scholar
12. Connelly, N. G. Geiger, W. E. Chem. Rev. 1996, 96, 877.Google Scholar
13. Langhals, H. Demmig, S. Huber, H. Spectrochim. Acta 1988, 44A, 1189.Google Scholar