Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T03:52:51.392Z Has data issue: false hasContentIssue false

Microwave synthesis of ZrO2 and Yttria stabilized ZrO2 particles from aqueous precursor solutions

Published online by Cambridge University Press:  13 July 2012

Kenny Vernieuwe
Affiliation:
SCRiPTS, Department of Inorganic and Physical Chemistry, Ghent University, 218-S3 Krijgslaan, Ghent, B-9000, Belgium
Petra Lommens
Affiliation:
SCRiPTS, Department of Inorganic and Physical Chemistry, Ghent University, 218-S3 Krijgslaan, Ghent, B-9000, Belgium
Freya Van den Broeck
Affiliation:
NMR and structure analysis, Department of Organic Chemistry, Ghent University, 218-S4 Krijgslaan, Ghent, B-9000, Belgium
José C. Martins
Affiliation:
NMR and structure analysis, Department of Organic Chemistry, Ghent University, 218-S4 Krijgslaan, Ghent, B-9000, Belgium
Isabel Van Driessche
Affiliation:
SCRiPTS, Department of Inorganic and Physical Chemistry, Ghent University, 218-S3 Krijgslaan, Ghent, B-9000, Belgium
Klaartje De Buysser
Affiliation:
SCRiPTS, Department of Inorganic and Physical Chemistry, Ghent University, 218-S3 Krijgslaan, Ghent, B-9000, Belgium
Get access

Abstract

Zirconia and Yttrium stabilized zirconia are well-known ceramic materials. Scaling down the dimension of these ceramics can result in a faster sintering process at lower temperatures. Microwave synthesis of nano-structured particles is a very attractive synthesis route because of the short synthesis time and low reaction temperature. This allows a fast screening of the influence of different parameters such as time, temperature and pressure on the final size and crystal phase of the particles. In this study Zr and Zr/Y aqueous precursors are mixed with a variety of complexing agents or surfactants in different ratios. The reason is twofold: (1) we aim for a stable precursor solution which is established by lowering the free ion concentration and (2) we want to see the influence of the complexing agents on the growth of the particles and the formation of crystalline phases. Particle sizes of these particle vary from 40 -200 nm. The crystallinity is confirmed by X-ray diffraction. The stabilization of these particles and possible exchange of the ligands is examined with NMR measurements (1D - proton combined with 2D NOESY) and is compared with TGA-DTA analysis of the isolated particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Callister, W.D., in Materials Science and Engineering: An Introduction, (Wiley & Sons, Danvers, 2000), p. 661.Google Scholar
2. Brinker, C.J. and Scherer, G.W., in Hydrolysis and Condensation I Nonsilicates, (Academic press, San Diego, California, 1990), p. 20 Google Scholar
3. Livage, J., New Journal of Chemistry 25, 1 (2001).Google Scholar
4. Feys, J., Vermeir, P., Lommens, P., Hopkins, S.C., Granados, X., Glowacki, B.A., Bäcker, M., Reick, E., Ricart, S., Holzapfel, B., Van Der Voort, P. and Van Driessche, I., J. Mater. Chem. 22, 3717 (2012).Google Scholar
5. Arin, M., Lommens, P., Avci, N., Hopkins, S.C., De Buysser, K., Arabatzis, I.M., Poelman, D. and Van Driessche, I., J. Eur. Ceram. Soc. 31, 1067 (2011).Google Scholar
6. Arin, M., Lommens, P., Hopkins, S.C., Pollefeyt, G., Van der Eycken, J., Ricart, S., Granados, X., Glowacki, B.A. and Van Driessche, I., Nanotechnology (2012).Google Scholar
7. Cloet, V., Feys, J., Huhne, R., Hoste, S. and Van Driessche, I., J. Solid State Chem. 182, 37 (2009).Google Scholar
8. Okubo, T. and Nagamoto, H., J. Mater. Sci. 30, 749 (1995).Google Scholar
9. Armendariz, H., Cortes, M.A., Hernandez, I., Navarrete, J. and Vazquez, A., J. Mater. Chem. 13, 143 (2003).Google Scholar
10. Gressel-Michel, E., Chaumont, D. and Stuerga, D., J. Colloid Interface Sci. 285, 674 (2005).Google Scholar
11. Moreira, M.L., Mambrini, G.P., Volanti, D.P., Leite, E.R., Orlandi, M.O., Pizani, P.S., Mastelaro, V.R., Paiva-Santos, C.O., Longo, E. and Varela, J.A., Chem. Mat. 20, 5381 (2008).Google Scholar
12. Thostenson, E.T. and Chou, T.W., Compos. Pt. A-Appl. Sci. Manuf. 30, 1055 (1999).Google Scholar
13. Zawadzki, M., Journal of Alloys and Compounds 454, 347 (2008).Google Scholar
14. Hassinen, A., Moreels, I., Donega, C.D., Martins, J.C. and Hens, Z., J. Phys. Chem. Lett. 1, 2577 Google Scholar
15. Martell, A.E. and Smith, R.M., in Critical Stability Constants - Volume 3: Other Organic Ligands edited by Editor (Plenum Press, New York, 1977), p. Pages.Google Scholar