Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-06T10:13:38.313Z Has data issue: false hasContentIssue false

Microstructures of Laser Deposited 304L Austenitic Stainless Steel

Published online by Cambridge University Press:  10 February 2011

John A. Brooks
Affiliation:
Sandia National Laboratories, Livermore, CA
Thomas J. Headley
Affiliation:
Sandia National Laboratories, Albuquerque, NM
Charles V. Robino
Affiliation:
Sandia National Laboratories, Albuquerque, NM
Get access

Abstract

Laser deposits fabricated from two different compositions of 304L stainless steel powder were characterized to determine the nature of the solidification and solid state transformations. One of the goals of this work was to determine to what extent novel microstructures consisting of single-phase austenite could be achieved with the thermal conditions of the LENS process. Although ferrite-free deposits were not obtained, structures with very low ferrite content were achieved. It appeared that, with slight changes in alloy composition, this goal could be met via two different solidification and transformation mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brooks, J. A. and Thompson, A. W., International Materials Reviews 36 (1), 16 (1991).Google Scholar
2 David, S. A. and Vitek, J. M., in Lasers in Metallurgy, edited by Mukherjee, K. and Mazumder, J. (TMS-AIME, Warrendale, PA, 1981), p. 247.Google Scholar
3 Vitek, J. M., Dasgupta, A., and David, S. A., Metall. Trans. A 14A, 1833 (1983).Google Scholar
4 Katayama, S. and Matsunawa, A., in Proc. ICALEO, San Francisco, pp. 1925 (1985).Google Scholar
5 Brooks, J. A., Baskes, M. I. and Greulich, F. A., Metall. Trans. A 22A, 915 (1991).Google Scholar
6 Elmer, J. W., Allen, S. M. and Eagar, T. W., Metall. Trans. A 20A, 2117 (1989).Google Scholar
7 David, S. A., Vitek, J. M. and Hubble, T. L., Weld. J. 66 (10), 289-s (1987).Google Scholar
8 Nakao, Y., Nishimoto, K., and Zhang, W., Trans. JWJ 119, 101 (1988).Google Scholar
9 Inoue, H., Koseki, T., Ohkita, S., ISIJ 1977, 1248.Google Scholar
10 Kurz, W. and Fisher, D. J., Fundamentals of Solidification, (Trans Tech Publications Ltd., Switzerland, 1989).Google Scholar
11 Fukumoto, S. and Kurz, W., ISIJ International 37 (7), 677 (1997).Google Scholar
12 Elmer, J. W., in The Metals Science of Joining, edited by Cieslak, M. J., Kang, Perepezko and Glicksman, , (TMS, Warrendale, PA, 1992) pp. 123133.Google Scholar
13 Hammer, O. and Svensson, U., in Solidification and Casting of Metals (The Metals Society, London, 1979), p. 401.Google Scholar
14 Takalo, T., Suutula, N. and Moisio, T., Metall. Trans. A 10 (4), 1173 (1979).Google Scholar
15 Suutula, N., Effect of solidification conditions on the solidification mode in austenitic stainless steels, Acta Universitatis Ouluensis, Series C Technica 23, (University of Oulu, Oulu, Finland 1982).Google Scholar
16 Suutula, N., Takalo, T. and Moisio, T., Metall. Trans. A 10 (4), 512 (1979).Google Scholar
17 Long, C. J. and DeLong, W. T., Weld. J. 52, 281-s (1973).Google Scholar
18 Laursen, B., Olsen, F., Yardy, J. and Funder-Kristensen, T., in International Conference on Welding and Joining Science and Technology, Madrid, Spain, (ASM, 1997) pp. 571580.Google Scholar
19 Nishiyama, S., Sci. Rept., Tokyo Univ. 23, 369 (1993).Google Scholar
20 Wasserman, G., Ach. Eisenhuttenwesen 16, 647 (1933).Google Scholar
21 Pugh, J. W. and Nisbet, J. D., Trans. TMS-AIME 188, 268 (1950).Google Scholar
22 Brooks, J. A., Yang, N. and Krafcik, J., in Recent Trends In Welding Science and Technology, edited by David, S. A. and Vitek, J. M., (ASM International, 1992).Google Scholar
23 Porter, D. A. and Easterling, K. E., in Phase Transformations in Metals and Alloys, (Chapman and Hall, 1992), pp.349358.Google Scholar