Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T10:33:19.047Z Has data issue: false hasContentIssue false

Microstructures in Sic and Si3N4 Implanted with Ti and Heat Treated

Published online by Cambridge University Press:  25 February 2011

R. G. Vardiman*
Affiliation:
Naval Research Laboratory Washington, DC 20375-5000, USA
Get access

Abstract

Bulk SiC and Si3N4 have been implanted with Ti at room temperature, and subsequently vacuum heat treated between 800° and 1100°C. All specimens were backthinned by ion milling and examined in TEM. SiC becomes amorphous on implantion, and develops a fine dispersion of TiC precipitates up to 800°C. At 900°C recrystallization has begun, possibly nucleated by the TiC particles. Si3N4 shows fine TiN particles in an amorphous matrix even as implanted. This structure is retained up to 900°C. At 1000°C, regrowth of the Si3N4 apparently from the substrate begins, and the TiN particles also grow as large as 200nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hart, A. A., Dunlap, H. L., and Marsh, O. J., Rad. Eff. 9, 261 (1971).Google Scholar
2. Wright, A. B. and Gruen, D. M., Rad. Eff. 33, 133 (1977).Google Scholar
3. Williams, J. M., McHargue, C. J., and Appleton, B. R., Nucl. Inst. Meth. 209/210, 317 (1983).Google Scholar
4. McHargue, C. J., Farlow, G. C., White, C. W., Williams, J. M., Appleton, B. R., and Naramoto, H., Mat. Sci. Eng. Eng. 69, 123 (1985).Google Scholar
5. Sklad, P. S., Angelini, P., McHargue, C. J., and Williams, J. M., Proc. 42nd Ann. Meet. Electron Microscope Soc. of America (San Francisco Press, 1984) p. 416.Google Scholar
6. McHargue, C. J. and Yust, C. S., Jour. Am. Cer. Soc. 67, 117 (1984).Google Scholar
7. Appleton, B. R., Naramoto, H., White, C. W., Holland, O. W., McHargue, C. J., Farlow, G., Narayan, J., and Williams, J. M., Nucl. Instz Meth. B1, 167 [1984.CrossRefGoogle Scholar
8. Spitznagel, J. A., Wood, S., Choyke, W. J., Doyle, N. J., Bradshaw, J., and Fishman, S. G., Nucl. Inst. Meth. B16, 237 (1986).Google Scholar
9. McHargue, C. J., Farlow, G. C., Begun, G. M., Williams, J. M., White, C. W., Appleton, B. R., Sklad, P. S., and Angelini, P., Nucl. Inst. Meth. B16, 237 (1986), p. 212.Google Scholar
10. Bohn, H. G., Williams, J. M., McHargue, C. J., and Begun, G. M., J. Mater. Res. 2, 107 (1987).CrossRefGoogle Scholar
11. Roberts, S. G. and Page, T. T. in Ion Implantation into Metals, eds. Ashworth, V., Grant, W. A., and Proctor, R. P. M. (Pergamon Press, 1982) p. 135.Google Scholar
12. McHargue, C. J. and Williams, J. M. in Metastable Materials Formation by Ion Implantation, eds. Picraux, S. T. and Choyke, W. J. (Elsevier, New York, 1982) p. 303.Google Scholar
13. Burnett, P. J. and Page, T. T., Proc. Brit. Cer. Soc. 34, 65 (1984).Google Scholar
14. Singer, I. L., Surf. Coat. Tech. 33, 487 (1987).Google Scholar
15. Campbell, A. B., Shewchun, J., Thompson, D. A., Davies, J. A., and Mitchell, J. B. in Ion Implantation in Semiconductors, ed. Namba, S. (Plenum Press, N.Y., 1975) p. 291.CrossRefGoogle Scholar