Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T14:24:51.431Z Has data issue: false hasContentIssue false

Microstructured Soft Glass Fibers for Advanced Fiber Lasers

Published online by Cambridge University Press:  01 February 2011

Axel Schulzgen
Affiliation:
[email protected], University of Arizona, College of Optical Sciences, 1630 E. University Blvd., Tucson, AZ, 85750, United States
Li Li
Affiliation:
[email protected], University of Arizona, College of Optical Sciences, 1630 E. University Blvd., Tucson, AZ, 85750, United States
Xiushan Zhu
Affiliation:
[email protected], University of Arizona, College of Optical Sciences, 1630 E. University Blvd., Tucson, AZ, 85750, United States
Shigeru Suzuki
Affiliation:
[email protected], University of Arizona, College of Optical Sciences, 1630 E. University Blvd., Tucson, AZ, 85750, United States
Valery L. Temyanko
Affiliation:
[email protected], University of Arizona, College of Optical Sciences, 1630 E. University Blvd., Tucson, AZ, 85750, United States
Jacques Albert
Affiliation:
[email protected], Carleton University, Department of Electronics, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
Nasser Peyghambarian
Affiliation:
[email protected], University of Arizona, College of Optical Sciences, 1630 E. University Blvd., Tucson, AZ, 85750, United States
Get access

Abstract

Combining novel highly-doped phosphate glasses and advanced fiber drawing techniques, we fabricated and tested single-frequency fiber lasers that generate powers of more than 2-W. We demonstrate enhanced performance employing active photonic crystal fiber compared to more conventional devices that are based on large core step-index fiber.

Through the integration of phosphate glass fiber gratings and highly-doped active phosphate glass fiber, we improve on optical, thermal, and mechanical behavior of our compact fiber lasers. Powerful and widely tunable phosphate glass distributed fiber lasers are presented and the possibility of cascading several grating structure for multiple wavelength generation is demonstrated. We also present results on phase-locking and coherently combining the output of up to 37 fiber cores into a single, near-Gaussian laser beam. To achieve exclusive oscillation of the fundamental in-phase supermode, several all-fiber laser cavities have been designed, numerically analyzed, fabricated, and tested. We will report on a 10-cm long monolithic all-fiber laser that emits more than 12-W of optical power and is based on combining the output of 19 active cores. All the cores are integrated within the same cladding and arranged in a two-dimensional isometric array.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spiegelberg, Ch. Geng, J. Hu, Y. Kaneda, Y. Jiang, S. and Peyghambarian, N. J. Lightwave Tech. 22, 57 (2004).Google Scholar
3. Qiu, T. Li, L. Schülzgen, A., Temyanko, V. L. Luo, T. Jiang, S. Mafi, A. Moloney, J. V. and Peyghambarian, N. IEEE Photon. Technol. Lett. 16, 2592 (2004).Google Scholar
2. Li, L. Morrell, M. M. Qiu, T. Temyanko, V. L. Schülzgen, A., Mafi, A. Kouznetsov, D. Moloney, J. V., Luo, T. Jiang, S. and Peyghambarian, N. Appl. Phys. Lett. 85, 2721 (2004).Google Scholar
4. Qiu, T. Schülzgen, A., Li, L. Polynkin, A. Temyanko, V. L. Moloney, J. V. and Peyghambarian, N., Opt. Lett. 30, 2748 (2005).Google Scholar
5. Knight, J. C. Birks, T. A. Cregan, R. F. Russell, P. St. J. and Sandro, J. -P. de, Electron. Lett. 34, 1347 (1998).Google Scholar
6. Russell, P. St. J. Science 299, 358362 (2003).Google Scholar
7. Mortensen, N. A. Nielsen, M. D. Folkenberg, J. R. Petersson, A. and Simonsen, H. R. Opt. Lett. 28, 393 (2003).Google Scholar
8. Mangan, B. J. Arriaga, J. Birks, T. A. Knight, J. C. and Russell, P. St. J. Opt. Lett. 26, 1469 (2001).Google Scholar
9. Li, L. Schülzgen, A., Temyanko, V. L. Li, H. Sabet, S. Morrell, M. M. Mafi, A. Moloney, J. V., and Peyghambarian, N. Opt. Lett. 30, 3275 (2005).Google Scholar
10. Li, L. Schülzgen, A., Temyanko, V. L. Morrell, M. M. Sabet, S. Li, H. Moloney, J. V. and Peyghambarian, N., Appl. Phys. Lett. 88, 161106 (2006).Google Scholar
11. Schülzgen, A., Li, L. Temyanko, V. L. Suzuki, S. Moloney, J. V. and Peyghambarian, N. Opt. Express 14, 7087 (2006).Google Scholar
12. Albert, J. Schülzgen, A., Temyanko, V. L. Honkanen, S. and Peyghambarian, N.Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89, 101127 (2006).Google Scholar
13. Glas, P. Naumann, M. Schirrmacher, A. and Pertsch, T. in Technical Digest of Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 113.Google Scholar
14. Huo, Y. and Cheo, P. K. IEEE Photon. Technol. Lett. 16, 759 (2004).Google Scholar
15. Huo, Y. Cheo, P. and King, G. Opt. Express 12, 6230 (2004).Google Scholar
16. Li, A. Schülzgen, Chen, S. Temyanko, V. L. Moloney, J. V. and Peyghambarian, N. Opt. Lett. 31, 2577 (2006).Google Scholar
17. , Wrage, Glas, P. Leitner, M. Sandrock, T. Elkin, N. N. Napartovich, A. P. and Vysotsky, D. V., Proc. SPIE 3930, 212 (2000).Google Scholar
18. Li, A. Schülzgen, Li, H. Temyanko, V. L. Moloney, J. V. and Peyghambarian, N. JOSA B 24, 1721 (2007).Google Scholar
19. Zhu, X. Schülzgen, A., Li, L. Li, H. Temyanko, V. L. Moloney, J. V. and Peyghambarian, N. Optics Express 15, 10340 (2007).Google Scholar