Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T02:38:05.011Z Has data issue: false hasContentIssue false

Microstructure of ELO-GaN Layers Grown by Hydride Vapor Phase Epitaxy

Published online by Cambridge University Press:  21 March 2011

Silvija Gradecak
Affiliation:
Centre Interdépartemental de Microscopie Electronique, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Volker Wagner
Affiliation:
Institut de Micro et Optoélectronique, Département de Physique, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Marc Ilegems
Affiliation:
Institut de Micro et Optoélectronique, Département de Physique, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Fabienne Bobard
Affiliation:
Centre Interdépartemental de Microscopie Electronique, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Pierre Stadelmann
Affiliation:
Centre Interdépartemental de Microscopie Electronique, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Get access

Abstract

Electron microscopy techniques are applied to investigate structural properties of GaN layers selectively grown by hydride vapor phase epitaxy on crystalline and amorphous GaN seed layers deposited on (0001)Al2O3 substrates. Optimalization of the growth conditions lead to a reduction both of the stacking fault concentration and c-axis tilting in the laterally grown regions. During the lateral growth threading dislocations from the seed layer bend from vertical direction of propagation. Bending behavior depends on the type of the dislocation and on the shape of the GaN film in the initial stage of the growth. Optical properties of laterally grown regions are correlated with the high point-defect incorporation that is revealed by high-resolution electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amano, H., Sawaki, N., Akasaki, I., Toyoda, Y., Appl. Phys. Lett. 48, 209 (1986).Google Scholar
2. Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
3. Usui, A., Sunakawa, H., Sakai, A., Yamaguchi, A. A., Jpn. J. Appl. Phys. 36, L899 (1997).Google Scholar
4. Zheleva, T. S., Nam, Ok-H., Bremser, M. D., Davis, R. F., Appl. Phys. Lett. 71, 2472 (1997).Google Scholar
5. Sakai, Akira, Sunakawa, Haruo, Usui, Akira, Appl. Phys. Lett. 71, 2259 (1997).Google Scholar
6. Molnar, R. J., Götz, W., Romano, L. T., Johnson, N. M., J. Crystal Growth 178, 147 (1997).Google Scholar
7. Kapolnek, D., Keller, S., Vetury, R., Underwood, R. D., Kozodoy, P., Baars, S. P. Den, Mishra, U. K., Appl. Phys. Lett. 71, 1204 (1997).Google Scholar
8. Riemann, T., Christen, J., Kaschner, A., Hoffmann, A., Thomsen, Ch., Parillaud, O., V, Wagner, Ilegems, M., Proc. Int. Workshop on Nitride Semicond., Nagoya, Japan, 2000, IPAP Conf. Ser. 1, 280, 1002 (2000).Google Scholar
9. Parillaud, O., Wagner, V., Buehlmann, H. J., Ilegems, M., MRS Internet J. Nitride Semicond. Res. 3, 40 (1998).Google Scholar
10. Hÿtch, M. J., Snoeck, E., Kilaas, R., Ultramicroscopy 74, 131 (1998).Google Scholar