Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:29:24.039Z Has data issue: false hasContentIssue false

Microstructure of c-BN Films Deposited by IBAD: IR and Hrem Analyses

Published online by Cambridge University Press:  10 February 2011

S. Ilias
Affiliation:
Institut d'Electronique Fondamentale, URA CNRS 22, Bat 220, Université Paris-Sud, F -91405 Orsay cedex, France, [email protected]
J. Pascallon
Affiliation:
Institut d'Electronique Fondamentale, URA CNRS 22, Bat 220, Université Paris-Sud, F -91405 Orsay cedex, France, [email protected]
V. Stambouli
Affiliation:
Institut d'Electronique Fondamentale, URA CNRS 22, Bat 220, Université Paris-Sud, F -91405 Orsay cedex, France, [email protected]
D. Bouchier
Affiliation:
Institut d'Electronique Fondamentale, URA CNRS 22, Bat 220, Université Paris-Sud, F -91405 Orsay cedex, France, [email protected]
G. Nouet
Affiliation:
Laboratoire d'Etudes et de Recherches sur les Matériaux - Institut des Sciences de la Matière et du Rayonnement, Unité associée CNRS 6004, 6 Blvd du Maréchal Juin, F - 14050 Caen cedex, France, [email protected]
Get access

Abstract

The in-depth distribution of phases in c-BN films deposited by Ion Beam Assisted Deposition (IBAD) at two different ion energy values (300 and 600 eV) was investigated using the quantitative IR transmission measurements and the HREM technique. Whatever the value of the studied ion energies, the characteristic layered morphology of c-BN film is observed including the interfacial sp2 zone between the substrate and the c-BN volume. In the case of 600 eV ion energy, this interfacial zone is less well-defined in comparison with 300 eV ion energy and the corresponding thickness is more important. Furthermore, the h-BN phase is more diluted within the c-BN film volume showing that the purest phase concentration of c-BN is found for the lowest ion energy, i.e. 300 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuhr, M., Reinke, S. and Kulisch, W., Diamond Relat. Mater. 4, 375 (1995).Google Scholar
2. Ichiki, T., Amagi, S. and Yoshida, T., J. Appl. Phys. 79, 4381 (1996).Google Scholar
3. Rester, D.J., Aley, K.S, Davis, R.F. and More, K.L., J. Mater. Res. 8, 1213 (1993).Google Scholar
4. Hofsäss, H., Ronning, C., Griesmeier, U., Gross, M., Reinke, S., Kuhr, M., Zweck, J. and Fischer, R., Nucl. Instr. and Meth. B. 106, 153 (1995).Google Scholar
5. Medlin, D.L., Friedmann, T.A., Mirkarimi, P.B., Mills, M.J. and McCarty, K.F., Phys. Rev. B, 7884 (1994).Google Scholar
6. Ballal, A.K, Salamanka-Riba, L., Taylor, C.A. II and Doll, G.L., Thin Sol. Films. 224, 46 (1993).Google Scholar
7. Ilias, S., Stambouli, V., Pascallon, J., Djouadi, M.A. and Bouchier, D., to be submitted to JAP.Google Scholar
8. Mckenzie, D.R., McFall, W.D., Sainty, W.G., Davis, C.A and Collins, R.E., Diamond and Relat. Mater. 2, 970(1993).Google Scholar
9. Burat, O., Bouchier, D., Stambouli, V. and Gautherin, G., J. Appl. Phys. 68, 2780 (1990).Google Scholar
10. Bouchier, D., Sene, G., Djouadi, M.A. and Moller, P., Nucl. Instr. Meth. B. 89, 369 (1994).Google Scholar
Ilias, U.S., Sene, G., Djouadi, M.A., Stambouli, V. and Bouchier, D., in Le Vide: science, technique et applications (Ed. Société Française du vide), 275, 234 (1995).Google Scholar
12. Geick, R., Perry, C. H. and Rupprecht, G., Phys. Rev. B. 146, 543 (1966).Google Scholar
13. Gielisse, P.J., Mitra, S.S., Polendl, J.N., Griffis, R.D., Mansur, L.C., Marshall, R. and Pascal, E.A., Phys. Rev. B. 155, 1039 (1967).Google Scholar