Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:25:24.877Z Has data issue: false hasContentIssue false

Microstructure Evolution and Weathering Reactions of Synroc Samples Crystallized from CaZrTi2O7 melts: TEM/AEM investigation and geochemical modeling

Published online by Cambridge University Press:  10 February 2011

Huifang Xu
Affiliation:
Transmission Electron Microscopy Laboratory, Department of Earth and Planetary Sciences, The University of New Mexico, Albuquerque, New Mexico 8713 1. [email protected]
Yifeng Wang
Affiliation:
Sandia National Laboratories, 115 North Main Street, Carlsbad, New Mexico 88220 [email protected]
Get access

Abstract

Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and analytical electron microscopy (AEM) studies have been conducted on samples crystallized from a melt with a composition of zirconolite {(Ca0.9Gd0.1)Zr(Ti1.9Al0.1)2, O7}. The formationof a whole suite of Synroc minerals (zirconia, ZrTiO4, zirconolite, perovskite, and rutile) has been observed. The formation of these minerals follows the crystallization sequence of Ti-bearing zirconia → ZrTiO4 phase → Zr-rich zirconolite → Zr-poor zirconolite →rutile/perovskite. This sequence is induced by a fractional crystallization process, in which Zr-rich mineral phases tend to crystallize first, resulting in continuous depletion of Zr in melt. Consistent with this melt compositional evolution, Zr content in the zirconolite decreases from the area next to ZrTiO4 phase to the area next to rutile or perovskite. High-resolution TEM images show that there are no glassy phases at the grain boundary between zirconolite and perovskite. The fractional crystallization-induced textural heterogeneity may have a significant impact on the incorporation of radionuclides into crystalline phases and the resistance of radioniclides to leaching processes. Exsolution lamellae and multiple twinning result from the phase transition from tetragonal zirconia to monoclinic zirconia may decrease durability of the Synroc. Fast cooling of melt may produce more zirconolite phase andrelatively uniform texture. In general, however, a Synroc prepared by a through-melt method is less uniform in texture than that prepared by a through-sol-gel method. The reaction path calculation for the alteration of U-bearing zirconolite in an oxidizing fluid shows that zirconolite is first altered into a perovskite-like phase (CaZrO3), followed by rutile (TiO2 ), and U6+ -bearing phases of soddyite [(UO2)2SiO42H20] and haiweeite [Ca(U02)2Si6O15·5H2O].

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dosch, R. G., Headley, T. J., Northrup, C. J., and Hlava, P. F., Sandia National Laboratories Report, Sandia82-2980, 84pp (1982).Google Scholar
2. Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M., and Ramm, E. J., Synroc, . In Lutze, W. and Ewing, R. C. eds., “Radioactive Waste Forms for the Future” North-Holland, Amsterdam, pp. 233334 (1988).Google Scholar
3. Jostsons, A., Vance, E. R., Mercer, D. J., Oversby, V. M., In Murakami, T. and Ewing, R. C. eds. “Scientific Basis for Nuclear Waste Management XVIII.” Materials Research Society, Pittsburgh, pp. 775781 (1995).Google Scholar
4. Ewing, R. C., Weber, W. J., and Lutze, W., In Merz, E. R. and Walter, C. E. eds., “Disposal of Excess Weapons Plutonium as Waste.” NATO ASI Series, Kluwer Academic Publishers, Dordrecht, pp. 6583 (1996).Google Scholar
5. Weber, W. J., Ewing, R. C., and Lutze, W., In Murphy, W. M. and Knecht, D. A. eds., “Scientific Basis Ibr Nuclear Waste Management XIX, Proceedings of Materias Research Society,” vol.412, pp. 2532 (1996).Google Scholar
6. Bakel, A. J., Buck, E. C., and Ebbinghaus, B., (1997) In “Plutonium Future – The Science.” Los Alamos National Laboratories, 135–136 (1997).Google Scholar
7. Begg, B. D., and Vance, E. R., In Gray, W. J. and Triay, I. R. eds. “Scientific Basis for Nuclear Waste Management,” 20, 333340 (1997).Google Scholar
8. Begg, B. D., Vance, E. R., Day, R. A., Hambley, M., and Conradson, S. D. In Gray, W. J. and Triay, I. R. eds. “Scientific Basis for Nuclear Waste Management,” 20, 325332 (1997).Google Scholar
9. Buck, E. C., Ebbinghaus, B., Bakel, A. J., and Bates, J. K., (1997) Characterization of a plutonium-bearing zirconolite-rich Synroc. In Gray, W. J. and Triay, I. R. eds. “Scientific Basis for Nuclear Waste Management,” 20, 12591266.Google Scholar
10. Vance, E. R., MRS Bulletin, vol. XIX, p. 2832 (1994).Google Scholar
11. Vance, E. R., Jostsons, A., Stewart, M. W. A., Day, R. A., Begg, B. D., Hambley, M. J., Hart, K. P., and Ebbinghaus, B. B., In”Plutonium Future – The Science.” Los Alamos National Laboratories,,19–20 (1997a).Google Scholar
12. Vance, E. R., Hart, K. P., Day, R. A., Carter, M. L., Hambley, M., Blackford, M. G., and Begg, B. D., In Gray, W. J. and Triay, I. R. eds. “Scientific Basis for Nuclear Waste Management,” 20, 341348 (1997b).Google Scholar
13. Lumpkin, G. R., Smith, K. L., Mark, G., and Blackford, M. G., In Murakami, T. and Ewing, R. C. eds. “Scientific Basis for Nuclear Waste Management,” 18, 885–862 (1995).Google Scholar
14. Bates, J. K., Buck, E. C., Dietz, N. L., DiSanto, T., Ebert, W. L., Emery, J. W., Fortner, J. A., Hafenrichter, L. D., Hoh, J. C., Luo, J. S., Nunez, L., Surchik, M. T., Wolf, S. F., and Wronkiewicz, ., ANL technical support program for DOE office of Environmental Management annual report (ANL-96/ I1). Argonne National Laboratory, Argonne, Illinois, 140pp (1996).Google Scholar
15. Solomah, A. G., Sridhar, T. S., and Jones, S. C., In “Advances in Ceramics, vol.20, Nuclear Waste Management II, American Ceramic Society, Columbus, p. 259 (1996).Google Scholar
16. Hench, L. L., Clarke, D. E., and Campbell, J., Chemical Waste Management, 5, 149 (1984).Google Scholar
17. Kesson, S. E., and Ringwood, A. E., Immobilization of HLW in Synroc-E. In McVay, G. L. ed. “Scientific Basis for Nuclear Waste Management,” 7, 507 (1984).Google Scholar
18. Knyazev, O. A., Stefanovsky, S. V., Ioudintsev, S. V., Nikonov, B. S., Omelianenko, B.I., Mokhov, A. V., and Yakushev, A. I., In Gray, W. J. and Triay, I. R. eds. “Scientific Basis for Nuclear Waste Management,” 20, 401408.Google Scholar
19. Huebner, J. S., In “Reviews in Mineralogy,” vol.7, 213288 (1997).Google Scholar
20. Swenson, D., Nieh, T.G., and Fournelle, J. H., In Murphy, W. M. and Knecht, D. A. eds. “Scientific Basis for Nuclear Waste Management,” 19, 337344 (1996).Google Scholar
21. Wolery, T. J., EQ3/6, (version 7.0), Lawrence Livermore National Laboratory, UCRL-MA-110662 % 1–4 (1992).Google Scholar
22. Putnam, R. L., Navrosky, A., Woodfield, B. F., Boerio-Goates, J., and Shapiro, J. L., J., Chem. Thermodynamics. In press (1998).Google Scholar
23. Curtis, C. E., Doney, L. M., and Johnson, J. R., Journal of the American Ceramic Society, 37, 458465 (1954).Google Scholar