Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T17:25:46.564Z Has data issue: false hasContentIssue false

Microstructure and Temperature Dependence of Microwave Penetration Depth of Ag-YBa2Cu3O7-δ Thin Films

Published online by Cambridge University Press:  15 February 2011

Davinder Kaur
Affiliation:
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-400 005, India
R. Pinto
Affiliation:
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-400 005, India
Get access

Abstract

We report the measurements of the magnetic penetration depth λ(T) of Ag-doped YBa2Cu3O7-δ (YBCO) thin films in the film thickness range 1500-4000A and temperature range 18-88K. The films are insitu grown by laser ablation on LaAlO3 <100> single crystal substrates. The penetration depth measurements are performed by microstrip resonator technique. A correlation of λ(T) with the film microstructure observed with Atomic Force Microscopy has shown that λ(T) depends critically on the film microstructure. Temperature dependence of λ(T) has also been studied for best quality films.The experimental results are discussed in terms of BCS theory (s-wave pairing) and d-wave Pairing with and without impurity scattering. The results are found to be best fitted to the d-wave model in dirty limit with impurity scattering. Near Tc, we have also compare the (3D) XY critical regime and the Ginzburg-Landau (GL) behaviour.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Prohammer, M, and Carbotte, J.P., Phys. Rev. B 43, 5370 (1991).Google Scholar
2. Arberg, P., Mansor, M., and Carbotte, J.P., Solid State Commun. 86, 671 (1993).Google Scholar
3. Annett, J.F., Goldenfeld, N., and Legget, A., Physical Properties of High Temperature Superconductors, Word Scientific, Singapore, 1996;Google Scholar
Van Harlingen, D.J., Rev. Mod. Phys. vol 67, 515 (1995).Google Scholar
4. Hardy, W.N., Bonn, D.A., Morgan, D.C., Liang, R., and Zhang, K., Phys. Rev. Lett. 70, 3999 (1993).Google Scholar
5. Brandstatter, G., Vostner, A., Weber, H.W., Chattopadhyay, T., Cubitt, R., Fischer, H., and Emel'chenko, G. A., Physica C 282–287, 2089 (1997).Google Scholar
6. Ma, Z., Taber, R.C., Lombardo, L.W., Kapitulnik, A., Beasley, M.R., Merchant, P., Eom, C.B., Hou, S.Y., and Philips, J.M. Phys. Rev. Lett. 71, 781 (1993).Google Scholar
7. Anlage, S.M., and Wu, Dong-Ho, J. Supercond. 5, 395 (1992)Google Scholar
8. Pinto, R., Kaur, Davinder, Rao, M.S.R., Apte, P.R., Srinivasu, V.V., and Vijayaraghavan, R., Appl. Phys. Lett. 68, 1720 (1996).Google Scholar
9. Pinto, R., Studies of High Temperature Superconductors, Nova Science Publishers, 17, 147 (1996).Google Scholar
10. Langley, B.W., Anlage, S.M., Pease, R.F.W., and Beasley, M.R., Rev. Sci. Instrum. 62, 1801 (1991).Google Scholar
11. Muhlschlegel, B., Z.Physik 155, 313(1959).Google Scholar
12. Won, H., and Maki, K., Phys. Rev. B 49, 1397 (1994).Google Scholar
13. Sun, Y., and Maki, K., Phys. Rev. B 51, 6059 (1995).Google Scholar
14. Chang, W.H., J. Appl. Phys. 50, 8129 (1979).Google Scholar
15. Lin, Z.H., Spalding, G.C., Goldman, A.M., and Valls, O.T., Europhys.Lett. 32,573 (1995)Google Scholar