Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:28:57.388Z Has data issue: false hasContentIssue false

The Microstructural Nature of Electromigration and Mechanical Stress Voids in Integratedcircuit Interconnect

Published online by Cambridge University Press:  21 February 2011

Jamie H. Rose
Affiliation:
Digital Equipment Corporation, 30 Forbes Rd., NRO5/B4, Northboro, MA 01532
Terry Spooner
Affiliation:
Digital Equipment Corporation, 77 Reed Rd., HLO2-1/G09, Hudson, MA 01749
Get access

Abstract

It is well known that stress and electromigration induced voiding is of major concern for integrated circuit interconnect reliability. However, there has been little systematiccharacterization of void morphology and crystallography in ever more technologically important narrow, “near-bamboo” conducting lines. Prior reports indicate thatvoids are typically wedge or slit shaped, with failure often associated with slit voids.Void face habit plane is most often reported to be {111}. Wedge and slit void morphology and crystallography have been studied in comb/serpentine and parallel line array test structures. In virtually all cases, void faces are {111} oriented. In contrast to earlier studies, intragranular wedge stress voids have been observed. All electromigration opens were due to slit voids; these were typically intragranular, in contradiction to current theories of void formation, and likely are mechanical fractures. Under accelerated test conditions, non-grain boundary diffusion paths appear to operate at distances of tens of micrometers. Relative displacement between wedge voids and attached grain boundaries occurs where a wedge face lies on a near common {111} plane for the two grains. It is suggested that slit voids are intragranular under both stress and electromigration conditions and likely associated with local interconnect depassivation. Based solely on appearance and crystallography, no void can uniquely be identified as due to stress alone or electromigration alone.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Borgesen, P., Korhonen, M.A., and Li, C.-Y., Thin Solid Films 220,8 (1992).Google Scholar
2. Totta, P.A. in Stress-Induced Phenomena in Metallization: First International Workshop 1991, edited by. Li, C.-Y., Totta, P., and Ho, P., (ALP Conf. Proc. 263, New York, 1992) p. 1.Google Scholar
3. Korhonen, M.A., LaFontaine, W.R., Borgesen, P., and Li, C.-Y., J. Appl. Phys, 70,6774 (1991).Google Scholar
4. Whitman, Charles S. and Chung, Yip-Wah, J. Vac. Sci. Technol. A9, 2516 (1991).Google Scholar
5. Klema, J., Pyle, R. and Domangue, E., Proc. 22nd Ann. Int'l. Reliab. Phys. Symp., IEEE, I (1984).Google Scholar
6. Curry, J., Fitzgibbon, G., Guan, Y., Muollo, R., Nelson, G. and Thomas, A., 22nd Ann. Int'l. Reliab. Phys. Symp., IEEE, 6 (1984).Google Scholar
7. Owada, N., Hinode, K., Horiuchi, M., Nishida, T., Nakata, K., and Mukai, K., Proc. VLSI Multilevel Interconnection Conference, IEEE, 173 (1985).Google Scholar
8. Hinode, K., Owada, N., Nishida, T. and Mukai, K., J. Vac. Sci. Technol. B5, 518 (1987).CrossRefGoogle Scholar
9. Mayumi, S., Umemoto, T., Shishino, M., Nanatsue, H., Ueda, S., and Inoue, M., Proc. 25th Ann. Int'l. Reliab. Phys. Symp., IEEE, 15 (1987).Google Scholar
10. Hasunuma, M., Kaneko, H., Sawabe, A., Kawanoue, T., Kohanawa, Y., Komatsu, S., and Miyauchi, M., IEDM Tech. Dig., IEEE, 677 (1989).Google Scholar
11. Kaneko, H., Hasunuma, M., Sawabe, A., and Kawanoue, T., Proc. 28th Ann. Int'l. Reliab. Phys. Symp., IEEE, 194 (1990).Google Scholar
12. Paszkiet, C.A., Korhonen, M.A., and Li, C.-Y. in Electronic Packaging Materials Science V, edited by Lillie, E.D., Ho, P.S., Jaccodine, R., and Jackson, K (Mater. Res. Soc. Proc. 203, Pittsburgh, PA, 1991) p. 381.Google Scholar
13. Korhonen, M.A., Paszkiet, C.A., and Li, C.-Y., J. Appl. Phys, 69, 8083 (1991).Google Scholar
14. Tanikawa, A., Okabayashi, H., Mori, H., and Fujita, H., Proc. 28th Ann. Int'l. Reliab. Phys. Symp., IEEE, 209 (1990).Google Scholar
15. Okabayashi, H., Tanikawa, A., Mori, H., and Fujita, H., Ref. 2, pg. 174.Google Scholar
16. Pramanik, Dipankar and Jain, Vivek in Metallization: Performance and Reliability Issues for VLSI and ULSI (1991), edited by Gildenblat, G.S. and Schwartz, G.P., (SPIE Conf. Proc. 1596, 1991) p. 132.Google Scholar
17. Yue, J.T., Funsten, W.P. and Taylor, R.V., Proc. 23rd Ann. Int'l. Reliab. Phys. Symp., IEEE, 4 (1985).Google Scholar
18. Smith, W. Lee, Welles, Cliff, Bivas, A., Yost, F.G., and Campbell, J.E., Proc. 28th Ann. Int'l. Reliab. Phys. Symp., IEEE, 200 (1990).Google Scholar
19. Attardo, M.J. and Rosenberg, R., J. Appl. Phys. 41, 2381 (1970).Google Scholar
20. Berenbaum, L., J. Appl. Phys., 42, 880 (1971).Google Scholar
21. Vaidya, S., Fraser, D.B., and Sinha, A.K., Proc. 18th Ann. Int'l. Reliab. Phys. Symp., IEEE, 165 (1980).Google Scholar
22. Shingubara, Shoso, Nakasaki, Yasushi, and Kaneko, Hisashi, Appl. Phys. Lett., 58, 42 (1991).Google Scholar
23. Arzt, E. and Nix, W.D., J. Mater. Res. 6,731 (1991).Google Scholar
24. Sanchez, J.E. Jr., McKnelly, L.T., and Morris, J.W. Jr., J. Electron. Mater., 19, 1213 (1990).Google Scholar
25. Sanchez, J.E. Jr., Kraft, O., and Arzt, E., Appl. Phys. Lett. 61, 3121 (1992).Google Scholar
26. Rose, J.H., Appl. Phys. Lett. 61, 2180 (1992).Google Scholar
27. Sanchez, J.E. Jr., and Art, E. in Materials Reliability in Microelectronics II, edited by Thompson, C.V. and Lloyd, J.R. (Mater. Res. Soc. Proc. 265, Pittsburgh, PA, 1992) p. 131.Google Scholar
28. Sanchez, J.E. Jr., Randle, V., Kraft, O., and Arzt, E., to be published, 1992 SPIE Conf. Proceedings.Google Scholar
29. Levine, E. and Kitcher, I., Proc. 22ndAnn. Int'l. Reliab. Phys. Symp., IEEE, 242 (1984).Google Scholar
30. Castano, E., Maiz, J., Flinn, P., and Madden, M., Appl. Phys. Lett. 59, 129 (1991).Google Scholar
31. Madden, Michael C., Abratowski, Edward V., Marieb, Thomas, and Flinn, Paul A., Ref. 27, p. 33.Google Scholar
32. Besser, Paul R., Madden, Michael C., and Flinn, Paul A., J. Appl. Phys. 72, 3792 (1992).Google Scholar
33. Borgesen, P., Korhonen, M.A., Brown, D.D., and Li, C.-Y., Ref. 2, p. 219.Google Scholar
34. Sanchez, J.E. Jr., Kraft, O., and Arzt, E., Ref. 2, p. 250.Google Scholar
35. Kraft, O., Sanchez, J.E. Jr., and Arzt, E., Ref. 27, p. 119.Google Scholar
36. Thompson, C.V. and Cho, J., IEEE Electron. Device Lett. 7, 667 (1986).Google Scholar
37. Longworth, H.P. and Thompson, C.V., Appl. Phys. Lett. 60,2219 (1992).Google Scholar
38. Yost, F.G., Amos, D.E., and Romig, A.D. Jr., Proc. 27th Ann. Int'l. Reliab. Phys. Symp., IEEE, 193 (1989).Google Scholar
39. Blech, I.A. and Meieran, E.S., J. Appl. Phys. 40,485 (1969).CrossRefGoogle Scholar
40. Thompson, Carl (private communication).Google Scholar