Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-06T06:25:12.309Z Has data issue: false hasContentIssue false

Microstructural Fractal Dimension of AISI 316L Steel

Published online by Cambridge University Press:  03 September 2012

M. Hinojosa
Affiliation:
DIMAT, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, A.P. 076 suc F, 66450. San Nicolás de los Garza, N.L. México
R. Rodréguez
Affiliation:
DIMAT, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, A.P. 076 suc F, 66450. San Nicolás de los Garza, N.L. México
U. Ortiz
Affiliation:
DIMAT, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, A.P. 076 suc F, 66450. San Nicolás de los Garza, N.L. México
Get access

Abstract

Fractal dimension of the microstructure of AISI 316L steel (17 Cr, 12.7 Ni, 2.1 Mo, 1. 5 Mn, 0.01 C) with different degrees of strain were obtained from Richardson plots of grain boundary perimeter against magnification. Grain boundaries were revealed using conventional metallographic techniques and measurements were taken with the aid of an automatic image analizer (Quantimet 520) attached to an optical microscope. The magnifications used were 50, 100, 200, 400, and 1000X. The samples were obtained from a 4” diameter tubing, machined according to ASTM A370 standard test method and deformed to 5, 10, 15, and 20 % tensile strain. The results show that the fractal dimension of the grain boundaries changes as deformation is imparted to the material.

These results suggest that fractal dimension may be used to describe microstructural evolution of metals during deformation processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.- Mandelbrot, B.B.. The Fractal Geometry of Nature. Freeman, New York, 1982.Google Scholar
2.- Falconer, K.J. Fractal Geometry, John Wiley and sons, 1990.Google Scholar
3.- , Barnsley, Fractals Everywhere. Academic Press, 1988.Google Scholar
4.- Hornbogen., E. International Materials Review 1989, 34,277.Google Scholar
5.- Hornbogen., E. Trans. ASM, 1961,53, 569.Google Scholar
6.- Underwood., E. and Banerji., K., Mater. Sci. Eng. 80 (1986) 1.Google Scholar
7.- Mitchell, M. and Bonell, D.. J. Mater. Res., 5, No 10, Oct 1990. 2244.Google Scholar
8.- , Richards and , Dempsey. Scripta Metallurgica 22, 1988, p. 687.Google Scholar
9.- Gao., H.J. et al. J. Mater. Res., 9, No. 9, sep 1994, 2216 Google Scholar
10.- Mandelbrot, B.B., Passoja, D.E. and Paullay, A. J. Nature 1984, 308, 721.Google Scholar
11.- , Tsuda et al. J.of the Society of Materials Science, Japan/Zayro, 40, No. 455 Aug 1991 p. 1066.Google Scholar
12.- Mandelbrot, B.B., Science 1967, 156, 636.Google Scholar