Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T16:46:47.679Z Has data issue: false hasContentIssue false

Microstructural Evolution of Pb(Zr,Ti)O3 Ceramics Using Electron Paramagnetic Resonance

Published online by Cambridge University Press:  21 February 2011

W. L. Warren
Affiliation:
Materials and Process Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185-5800
B. A. Tuttle
Affiliation:
Materials and Process Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185-5800
R. W. Schwartz
Affiliation:
Materials and Process Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185-5800
W. F. Hammetter
Affiliation:
Materials and Process Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185-5800
D. C. Goodnow
Affiliation:
Materials and Process Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185-5800
J. T. Evans Jr.
Affiliation:
Radiant Technologies Inc., 1009 Bradbury Ave., Albuquerque, NM 87106
J. A. Bullington
Affiliation:
Radiant Technologies Inc., 1009 Bradbury Ave., Albuquerque, NM 87106
Get access

Abstract

Using electron paramagnetic resonance (EPR) we have followed the microstructural evolution with temperature of lead zirconate titanate (PZT) ceramics from the amorphous to the perovskite phase. A number of paramagnetic point defects were identified (Carbon, Pb+3, and Ti+3) while traversing the evolution of these ceramics during various heat treatments both before and after optical illumination. Perhaps the most important finding is that the Pb+3 and Ti+3 centers can only be optically created in the perovskite materials, thereby, showing that they are not associated with the amorphous or the pyrochlore phases. It is also found that EPR signals attributed to carbon radicals are present in fairly high concentrations (4 × 1017/cm3) if the solution chemistry derived PZT materials are annealed in an oxygen deficient ambient (0.1% O2) at 650°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Larsen, P.K., Cuppens, R., and Spierings, G.A.C.M., Ferroelectrics, 128, 265 (1992).CrossRefGoogle Scholar
2. Dimos, D. and Schwartz, R.W., MRS Symp. Proc., Vol. 243, 73 (1992).CrossRefGoogle Scholar
3. Schwartz, R.W., Bunker, B.C., Dimos, D., Assink, R.A., Tuttle, B.A., Tallant, D.R., and Weinstock, L.A., Integ. Ferroelectrics, 2, 243 (1992).CrossRefGoogle Scholar
4. Li, S., Condrate, R.A. Sr., and Spriggs, R.M., Spectroscopy Lett., 21, 969 (1988).CrossRefGoogle Scholar
5. Warren, W.L., Tuttle, B.A., McWhorter, P.J., Rong, F.C. and Poindexter, E.H., Appl. Phys. Lett., 62 (1993).Google Scholar
6. Warren, W.L., Seager, C.H., Dimos, D., and Friebele, E.J., Appl. Phys. Lett., 61, 2530 (1992).CrossRefGoogle Scholar
7. Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys., 64, 2717 (1988).CrossRefGoogle Scholar
8. Tuttle, B.A., Schwartz, R.W., Doughty, D.H., and Voight, J.A., MRS Symp. Proc., Vol. 200, 159 (1990).CrossRefGoogle Scholar
9. Carim, A.H., Tuttle, B.A., Doughty, D.H., and Martinez, S.L., J. Am. Cer. Soc., 74, 1455, (1991).CrossRefGoogle Scholar
10. Arafa, S. and Assabghy, F., J. Appl. Phys., 45, 5269 (1974).CrossRefGoogle Scholar
11. Warren, W.L., Tuttle, B.A., Sun, B.N., Huang, Y., and Payne, D.A., MRS Symp. Proc., (1993), these proceedingsGoogle Scholar
12. Warren, W.L., Tuttle, B.A., and Robertson, J., J. Am. Cer. Soc., submitted.Google Scholar
13. Devine, R.A.B. and Tissier, A., J. Appl. Phys., 69, 2480 (1991).CrossRefGoogle Scholar
14. Kordas, G., MRS Symp. Proc., Vol. 61, 419 (1986).CrossRefGoogle Scholar
15. Wertz, J.E. and Bolton, J. R., “Electron Spin Resonance” (Chapman Hall, NY, 1986).CrossRefGoogle Scholar