Published online by Cambridge University Press: 25 February 2011
The chemical and microstructural changes caused by the direct implantation of solutes into metals are examined. The particular case involving Al+-ion implantation into nickel is treated in detail. Chemical composition profiles measured using Auger spectroscopy and Rutherford backscattering, and average near-surface chemical composition measured using an analytical electron microscope, are compared with model calculations. The microstructures that develop during implantation are investigated using transmission electron microscopy. For low fluences implanted near room temperature, these microstructures contain dislocations and dislocation loops. Dislocation loops, dislocations, and voids result from implantations at temperatures near 500°C. Higher fluences at these elevated temperatures produce precipitates when the composition of implanted solute lies in a two-phase region of the phase diagram. Implanted concentrations corresponding to intermetallic compounds produce continuous layers of these compounds. Room temperature, as compared to elevated temperature, implantation may produce the same phases at the appropriate concentrations, e.g. β'-NiAl, or different phases, depending on the relative stability of the phases involved.