Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T16:59:05.259Z Has data issue: false hasContentIssue false

Microstructural and mechanical properties of ternary Mo-Si-B alloys resulting from different processing routes

Published online by Cambridge University Press:  04 February 2011

Manja Krüger
Affiliation:
Otto von Guericke University Magdeburg, Institute for Materials and Joining Technology, P.O. Box 4120, D‑39016 Magdeburg, Germany
Martin Heilmaier
Affiliation:
Technical University Darmstadt, Dept. Materials Science, D-64287 Darmstadt, Germany
Veronika Shyrska
Affiliation:
National Technical University of Ukraine “Kiyv Polytechnic Institute”, Kiew, Ukraine
Petr I. Loboda
Affiliation:
National Technical University of Ukraine “Kiyv Polytechnic Institute”, Kiew, Ukraine
Get access

Abstract

Mo-base silicide alloys take advantage of their outstanding intrinsic properties, notably the high melting point and, thus, their excellent mechanical and creep strength. We demonstrate how the processing route influences the microstructure and consequently the mechanical and oxidation behaviour. Therefore two fabrication routes, a powder metallurgical (PM) and a zone melting (ZM) process, both starting from elemental powders, were used to prepare several Mo-Si-B alloys with varying chemical compositions. While PM processing leads to an ultrafine microstructure with a continuous Mo solid solution (“α-Mo”) matrix and embedded particles of the two intermetallic compounds Mo3Si and Mo5SiB2, the directionally solidified (ZM) materials possess a coarse grained structure composed of an intermetallic matrix with dendritic islands of α-Mo. A comparative assessment of the mechanical behaviour of the alloys utilizing both the Vickers indentation fracture (VIF) technique and three-point bending tests emphasizes the beneficial effect of a continuous Mo matrix resulting in increased room temperature fracture toughness and a reduction of the brittle-to-ductile-transition-temperature (BDTT). Likewise, the positive effect of the fine grained and homogeneous microstructure on oxidation performance is shown by the evaluation of mass change during heat treatment at 1100°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berczik, D. M., U.S. Patents 5,595,616 and 5,693,616, East Hartford, United Technologies Corp. (1997)Google Scholar
2. Nieh, T. G., Wang, J. G., and Liu, C. T.: Intermetallics 9, 73 (2001)Google Scholar
3. Parthasarathy, T. A., Mendiratta, M. and Dimiduk, D. M., Acta Mat. 50, 1857 (2002)Google Scholar
4. Schneibel, J. H., Kramer, M. J. and Easton, D. S., Acta Mat. 46, 217 (2002)Google Scholar
5. Krüger, M., Franz, S., Saage, H., Heilmaier, M., Schneibel, J. H., Jéhanno, P., Böning, M. and Kestler, H., Intermetallics 16, 933 (2008)Google Scholar
6. Krüger, M., Saage, H., Heilmaier, M., Böning, M. and Kestler, H., J. Physics: Conf. Series 240, 01287 (2010)Google Scholar
7. Jéhanno, P., Heilmaier, M., Saage, H., Böning, M. and Kestler, H., Freudenberger, J. and Drawin, S., Mater. Sci. Eng. A463, 216 (2007)Google Scholar
8. Burk, S., Gorr, B., Trindade, V. B. and Christ, H.-J., Oxid Met 73, 163 (2010)Google Scholar
9. VerSnyder, F. L. and Shank, M. E., Mater. Sci. Eng. 33, 213 (1970) Eng. A 381, 1(2004) Google Scholar
10. Nunes, C. A., Sakidja, R., Dong, Z. and Perepezko, J. H., Intermetallics 8, 327 (2000)Google Scholar
11. Jéhanno, P., Heilmaier, M. and Kestler, H., Intermetallics 12, 1005 (2004)Google Scholar
12. Krüger, M., Saage, H., Heilmaier, M., Jéhanno, P., Böning, M., Kestler, H., Shyrska, V., Dudka, A. and Loboda, P., Proc. 17th Plansee Seminar, 4, RM 80/1 (2009)Google Scholar
13. Mitra, R., Int. Mat. Rev. 51, 13 (2006)Google Scholar
14. Palmquist, S., Arch. f. Eisenh. (in German) 33, 629 (1962)Google Scholar
15. Schneibel, J. H., Kramer, M. J. and Easton, D. S., Scripta Mat. 46, 217 (2002)Google Scholar
16. Choe, H., Chen, D., Schneibel, J. H. and Ritchie, R. O., Intermetallics 9(4), 319 (2001)Google Scholar
17. Woodard, S. R., Raban, R., Myers, J. F. and Berczik, D. M., European Patent EP 1,382,700 A1 (2004)Google Scholar
18. Heilmaier, M., Krüger, M., Saage, H., Rösler, J., Mukherji, D., Glatzel, U., Völkl, R., Hüttner, R., Eggeler, G., Somsen, C., Depka, T., Christ, H.-J., Gorr, B., and Burk, S., J. Mat. 61(7), 61 (2010)Google Scholar
19. Burk, S., unpublished results Google Scholar