Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:57:05.075Z Has data issue: false hasContentIssue false

Microscopic Study Of The Hydrogen Diffusion In III-V Semiconductors

Published online by Cambridge University Press:  10 February 2011

A. Burchard
Affiliation:
Fakultät für Physik, Universität Konstanz, D-78457 Konstanz, Germany
M. Deicher
Affiliation:
Fakultät für Physik, Universität Konstanz, D-78457 Konstanz, Germany
D. Forkel-Wirth
Affiliation:
CERN / PPE, CH-1211 Geneva 23, Switzerland
M. Knopf
Affiliation:
Fakultät für Physik, Universität Konstanz, D-78457 Konstanz, Germany
R. Magerle
Affiliation:
Universität Bayreuth, Physikalische Chemie, D-95440 Bayreuth, Germany
A. STötzler
Affiliation:
Fakultät für Physik, Universität Konstanz, D-78457 Konstanz, Germany
V. N. Fedoseyev
Affiliation:
Institute of Spectroscopy, 142092 Troitzk, Russia
V. I. Mishin
Affiliation:
Institute of Spectroscopy, 142092 Troitzk, Russia
The Isolde-Collaboration
Affiliation:
CERN / PPE, CH-1211 Geneva 23, Switzerland
Get access

Abstract

We report on experiments which observe on a microscopic scale the migration of isolated hydrogen in InP, GaAs, and InAs. Using the radioactive acceptor 117Cd, Cd-H pairs have been formed in these III-V semiconductors. After the decay of 117Cd to 117In, H is no longer bound to an acceptor and can diffuse freely. This diffusion has been observed by perturbed yy angular correlation (PAC) spectroscopy. At 10 K, the occupation of two different lattice sites by hydrogen has been observed. First results on the diffusion of hydrogen will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S. J. (ed.), Hydrogen in Compound Semiconductors, (Materials Science Forum Vol. 148–149, Trans Tech Publications, Aedermannsdorf, 1994).Google Scholar
2. Deicher, M. and Pfeiffer, W., in Ref. 1, p. 481.Google Scholar
3. Forkel-Wirth, D., Achtziger, N., Burchard, A., Correia, J. C., Deicher, M., Grillenberger, J., Gottschalk, H., Licht, T., Magerle, R., Reislöhner, U., Rub, M., Toulemonde, M., and Witthuhn, W., Materials Science Forum 196–201, 963 (1995).Google Scholar
4. Chevallier, J., in Ref. 1, p. 219.Google Scholar
5. Weidinger, A., Deicher, M., and Butz, T., Hyperfine Interactions 10, 717 (1981).Google Scholar
6. Burchard, A., Deicher, M., Magerle, R., Egenter, A., Spengler, R., and Forkel-Wirth, D., in Shallow-Level Centers in Semiconductors ed. by Ammerlaan, C. A. J. and Pajot, B. (World Scientific, Singapore, 1997) p. 185.Google Scholar
7. Mishin, V. I., Fedoseyev, V. N., Kluge, H.-J., Letokhov, V. S., Ravn, H. L., Scheerer, F., Shirakabe, Y., Sundell, S., and Tengblad, O., Nucl. Instr. Methods B 73, 550 (1993).Google Scholar
8. Firestone, R. B. and Shirley, V. S. (eds.), Table of Isotopes, 8th Edition (John Wiley & Sons, New York, 1996).Google Scholar
9. Wichert, Th., Achtziger, N., Metzner, H., and Sielemann, R., in Hyperfine Interactions of Defects in Semiconductors, ed. Langouche, G. (Elsevier, Amsterdam 1992) p. 77.Google Scholar
10. Kiefl, R. F., Schneider, J. W., Keller, H., KUndig, W., Odermatt, W., Patterson, B. D., Blezey, K. W., Estle, T. L., and Rudaz, S. L., Phys. Rev. B 32, 530 (1985).Google Scholar
11. Pavesi, L. and Gianozzi, P., Phys. Rev. B 46, 4621 (1992).Google Scholar
12. Koiwa, M., Acta Metallurgica 22, 1259 (1974).Google Scholar
13. Kadono, R., Kiefl, R. F., Brewer, J. H., Luke, G. M., Pfiz, T., Riseman, T. M., and Stemlieb, B. J., Hyperfine Interactions 64, 635 (1990).Google Scholar