Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T12:17:56.048Z Has data issue: false hasContentIssue false

Microscopic Processes in Microemulsion Polymerizations

Published online by Cambridge University Press:  21 February 2011

Francoise Candau*
Affiliation:
Institut Charles Sadron (CRM-EAHP), CNRS-ULP 6, rue Boussingault 67083 Strasbourg Cedex, France
Get access

Abstract

The polymerization of acrylamide inside watcr-swollen micellas of Aerosol OT dispersed in toluene has been investigated. Incorporation of acrylamide enhances the interparticular attractive forces as shown by the intensity curves in small angle neutron scattering. It also induces sharp rises in conductivity which were attributed to a percolative process. The percolation threshold is lowered upon increasing the monomer content, reflecting the enhancement of the attractive interactions. In percolating systems, the structure affects the formation of polymer particles. Microscopy experiments show that particle nucleation occurs continuously throughout the polymerization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Atik, S.S. and Thomas, K.J., J. Am. Chem. Soc. 104, 5868 (1982).Google Scholar
2. Jayakrishnan, A. and Shah, D.O., J. Polym. Sci. Polym. Lett. Ed. 22, 31 (1984).Google Scholar
3. Tang, H.I., Johnson, P.L. and Gulari, E., Polymer 25, 1357 (1984).Google Scholar
4. Schauber, C. and Riess, G., Makromol. Chem. 190, 725 (1989).Google Scholar
5. Leong, Y.S. and Candau, F., J. Phys. Chem. 86, 2269 (1982).Google Scholar
6. Kuo, P.L., Turro, N.J., Tseng, C.M., Aasser, M. El and Vanderhoff, J.W., Macromolecules 20, 1216 (1987).Google Scholar
7. Stoffer, J.O. and Bone, T., J. Polym. Sci. 18, 2641 (1980).Google Scholar
8. Candau, F., Leong, Y.S., Pouyet, G. and Candau, S.J., J. Colloid Interface Sci. 101, 167 (1984).Google Scholar
9. Leong, Y.S., Candau, S.J. and Candau, F., in Surfactants in Solution, edited by Mittal, K. and Lindmann, B. (Plenum Press, New York, 1984) 3, p.1897.Google Scholar
10. Carver, M.T., Hirsch, E., Wittmann, J.C., Fitch, R.M. and Candau, F., J. Phys. Chem. 93, 4867 (1989).Google Scholar
11. Lagues, M., Ober, R. and Taupin, C., J. Phys. Lett. 39, 487 (1978).Google Scholar
12. Cazabat, A.M., Chatenay, D., Langevin, D. and Meunier, J., Faraday Discuss. Chem. Soc. 76, 291 (1983).Google Scholar
13. Lagourette, B., Peyrelasse, J., Boned, C. and Clausse, M., Nature 5726, 60 (1979).Google Scholar
14. Dozier, W.D., Kim, M.W. and Chaikin, P.M., J. Colloid Interface Sci. 115, 545 (1987).Google Scholar
15. Kotlarchyk, M., Chen, S.H., Huang, J.S. and Kim, M.W., Phys. Rev. Lett. 53, 941 (1984).Google Scholar
16. Safran, S.A., Grest, G.S., Bug, A.L.R. and Webman, I., in Microemulsion Systems, edited by Rosano, H. and Clausse, M. (Surfactant Sciences Series 24, Dekker, New York, 1987) p. 235.Google Scholar
17. Jada, A., Lang, J. and Zana, R., J. Phys. Chem. 93, 10 (1989).Google Scholar
18. Kirkpatrick, S., Rev. Mod. Phys. 45, 574 (1973).Google Scholar
19. Bug, A.L.R., Safran, S.A., Grest, G.S. and Webman, I., Phys. Rev. Lett. 55, 1896 (1985).Google Scholar
20. Holtzscherer, C., Candau, F. and Ottewill, R.H., (submitted for publication).Google Scholar
21. Percus, J.K. and Yevick, G.J., Phys. Rev. 110, 1 (1958).Google Scholar
22. Ashcroft, N.W. and Lekner, J., Phys. Rev. 45, 33 (1966).Google Scholar
23. Cebula, D.J., Ottewill, R.H., Ralston, J. and Pusey, P.N., J. Chem. Soc. Faraday Trans. 77, 2585 (1981).Google Scholar
24. Candau, F., Leong, Y.S. and Fitch, R.M., J. Polym. Sci. Polym. Chem. Ed. 23, 193 (1985).Google Scholar
25. See for example Odian, G., in Principles of Polymerization, 2nd ed. (Wiley, New York, 1981).Google Scholar