Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T11:14:23.740Z Has data issue: false hasContentIssue false

Microscopic Mechanism and Domain Formation in the Paraelectric to Ferroelectric Phase Transitions in BaTiO3

Published online by Cambridge University Press:  01 February 2011

Marek Pasciak
Affiliation:
[email protected], Max Planck Institut für Chemische Physik fester Stoffe, Chemistry, Nöthnitzer Strasse 40, Dresden, 01187, Germany
Stefano Leoni
Affiliation:
[email protected], Max Planck Institut für Chemische Physik fester Stoffe, Chemistry, Nöthnitzer Strasse 40, Dresden, 01187, Germany
Get access

Abstract

A design approach to ferroelectric materials critically depends on an accurate description of the microscopic features associated with paraelectric-to-ferroelectric phase transitions. The fine structures of domains, domain walls, and domain boundary dynamics as well as a precise understanding of local atomic displacements can be accessed using adequate potential models based on ab initio calculations and advanced molecular dynamics simulations. For BaTiO3 a complex scenario of microscopic domains in the paraelectric (cubic) phase and in the ferroelectric (tetragonal) phase is obtained. Therein, the static and dynamic role of domain/antidomain features, as well as their dependence on Ti displacements around the <111> manifold is clearly emerging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cochran, W., Adv. Phys 9, 387 (1960).Google Scholar
2. Comes, R., Lambert, M. and Guinier, G., Acta Cryst. A 26, 244 (1970).Google Scholar
3. Quittet, A. M., Lambert, M., Solid State Commun. 12, 1053 (1973).Google Scholar
4. Ravel, B., Stern, E. A., Vedrinskii, R. I. and Kraisman, V., Ferroelectrics 206, 407 (1998).Google Scholar
5. Girshberg, Y. and Yacoby, Y., Solid State Commun. 103, 425 (1997).Google Scholar
6. Pirc, R., Blinc, R., Phys. Rev. B 70, 134107 (2004).Google Scholar
7. Zhang, Q., Cagin, T., Goddard, W. A. III, PNAS 103, 14695 (2006).Google Scholar
8. Zhong, W., Vanderbilt, D., Rabe, K. M., Phys. Rev. Lett. 73, 1861 (1994).Google Scholar
9. Sepliarsky, M., Migoni, R. L., Stachiotti, M. G., Comput. Mat. Sci. 10, 51 (1998).Google Scholar
10. Pasciak, M., Leoni, S., in preparation.Google Scholar
11. Cabral, B. and Leedom, C., SIGGRAPH93 conference Proceedings, 263 (1993).Google Scholar
12. Zahn, D. and Leoni, S., Phys. Rev. Lett 92, 250201 (2004); Phys. Rev. B 74, 94106 (2006).Google Scholar