Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:05:49.293Z Has data issue: false hasContentIssue false

Micromachined SFM Probes for High-Frequency Electric and Magnetic Fields

Published online by Cambridge University Press:  10 February 2011

D. W. Van Der Weide
Affiliation:
Department of ECE, University of Delaware, Newark, DE 19716–3130, [email protected]
V. Agrawal
Affiliation:
Department of ECE, University of Delaware, Newark, DE 19716–3130, [email protected]
P. Neuzil
Affiliation:
Ginzton Laboratory, Stanford University, Stanford, CA 94305
T. Bork
Affiliation:
Department of ECE, University of Delaware, Newark, DE 19716–3130, [email protected]
Get access

Abstract

We discuss micromachined localized high-frequency electric (coaxial) and magnetic (loop) field probes integrated with scanning force microscopes. Our approach enables simultaneous acquisition of both field and topography in the radio frequency (RF) through millimeter-wave regime, enabling more complete characterization of materials, devices and circuits.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Misra, D., Chabbra, M., Epstein, B. R., Microtznik, M., and Foster, K. R., IEEE Trans. Microwave Theory Tech. 38, 814 (1990).Google Scholar
2 Osofsky, S. S. and Schwarz, S. E., IEEE Trans. Microwave Theory Tech. 40, 1701–8 (1992).Google Scholar
3 Xu, Y., Ghannouchi, F. M., and Bosisio, R. G., IEEE Trans. Microwave Theory Tech. 40, 143–50 (1992).Google Scholar
4 Jiang, G. Q., Wong, W. H., Raskovich, E. Y., Clark, W. G., Hines, W. A., and Sanny, J., Rev. Sci. Instrum. 64, 1622–6(1993).Google Scholar
5 Jiang, G. Q., Wong, W. H., Raskovich, E. Y., Clark, W. G., Hines, W. A., and Sanny, J., Rev. Sci. Instrum. 64, 1614–21 (1993).Google Scholar
6 Ash, E. A. and Nichols, G., Nature 237, 510–12 (1972).Google Scholar
7 Fee, M., Chu, S., and Hansch, T. W., Optics Comm. 69, 219–24 (1989).Google Scholar
8 Keilmann, F., van der Weide, D. W., Eickelkamp, T., Merz, R., and Stockle, D., Optics Comm. 129, 1518(1996).Google Scholar
9 Wei, T., Xiang, X. D., Wallace-Freedman, W. G., and Schultz, P. G., Appl. Phys. Lett. 68, 3506–8 (1996).Google Scholar
10 Vlahacos, C. P., Black, R. C., Anlage, S. M., Amar, A., and Wellstood, F. C., Appl. Phys. Lett. 69, 3272–4(1996).Google Scholar
11 Golosovsky, M., Galkin, A., and Davidov, D., IEEE Trans. Microwave Theory Tech. 44, 1390–2 (1996).Google Scholar
12 Golosovsky, M. and Davidov, D., Appl. Phys. Lett. 68, 1579–81 (1996).Google Scholar
13 van der Weide, D. W. and Neuzil, P., JVST-B 14, 4144–7 (1996).Google Scholar
14 van der Weide, D. W., Appl. Phys. Lett. 70, 677–79 (1997).Google Scholar
15 van der Weide, D. W., Appl. Phys. Lett. 65, 881883 (1994).Google Scholar
16 Gore, W.L. & Associates, private communication.Google Scholar
17 MicroStripes 2.4 (Nottingham, KCC Ltd.).Google Scholar
18 Agrawal, V., Neuzil, P., and van der Weide, D. W., Appl. Phys. Lett. 71, 2343–45 (1997).Google Scholar
19 Kirtley, J. R., Ketchen, M. B., Stawiasz, K. G., Sun, J. Z., Gallagher, W. J., Blanton, S. H., and Wind, S. J., Appl. Phys. Lett. 66, 1138–40 (1995).Google Scholar
20 Black, R. C., Wellstood, F. C., Dantsker, E., Miklich, A. H., Koelie, D., Ludwig, F., and Clarke, J., Appl. Phys. Lett. 66, 1267–9 (1995).Google Scholar
21 Gruetter, P., Mamin, H. J., and Rugar, D., in Scanning tunneling microscopy II. Further applications and related scanning techniques. Second edition, edited by Wiesendanger, R. and Guntherodt, H. J. (Springer-Verlag, Berlin, Germany, 1995), p. 151207.Google Scholar
22 Yingjie, G. and Wolff, I., IEEE Trans. Microwave Theory Tech. 44, 911–18 (1996).Google Scholar