Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:47:49.268Z Has data issue: false hasContentIssue false

Microfluidic Manifolds with High Dynamic Range in Structural Dimensions Replicated in Thermoplastic Materials

Published online by Cambridge University Press:  31 January 2011

Holger Becker
Affiliation:
[email protected], microfluidic ChipShop GmbH, Carl-Zeiss-Promenade 10, Jena, 07745, Germany
Erik Beckert
Affiliation:
[email protected], Fraunhofer Institut für Angewandte Optik und Feinmechanik, Jena, Germany
Claudia Gärtner
Affiliation:
[email protected], microfluidic ChipShop GmbH, Jena, Germany
Get access

Abstract

In this paper, we present the manufacturing process of a polymer microfluidic device which is currently being used to investigate wetting properties of nanostructured microchannels replicated in hydrophobic thermoplastic materials like cyclo-olefin co-polymer (COC), polypropylene (PP) or polymethylmetacrylate (PMMA). These devices feature large structural dynamics (feature sizes between 200 μm and 200 nm). The mold insert necessary was fabricated using a combination of precision machining with single-point diamond turning (SPDT).

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kamahori, M. Ishige, Y. and Shimoda, M.Enzyme Immunoassay Using a Reusable Extended-gate Field-Effect-Transistor Sensor with a Ferrocenylalkanethiol-modified Gold Electrode,” Analytical Sciences, vol. 24, pp. 10731079, 2008.10.2116/analsci.24.1073Google Scholar
[2] Goncalves, D. Prazeres, D. M. F. Chu, V. and Conde, J. P.Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors,” Biosensors and Bioelectronics, vol. 24, pp. 545551, 2008.10.1016/j.bios.2008.05.006Google Scholar
[3] Migita, S. Ozasa, K. Tanaka, T. and Haruyama, T.Enzyme-based Field-Effect Transistor for Adenosine Triphosphate (ATP) Sensing,” Analytical Sciences, vol. 23, p. 4, 2007.10.2116/analsci.23.45Google Scholar
[4] Kang, S. J. P. B. S., Chen, J. J. Ren, F., Johnson, J. W. Therrien, R. J. Rajagopal, P. Roberts, J. C., Piner, E. L. and Linthicum, K. J.Electrical detection of deoxyribonucleic acid hybridization with AlGaN/GaN high electron mobility transistors,” Applied Physics Letters, vol. 89, pp. 122102122104, 2006.10.1063/1.2354491Google Scholar
[5] Zhang, Q. and Subramanian, V.DNA hybridization detection with organic thin film transistors: Toward fast and disposable DNA microarray chips,” Biosensors and Bioelectronics, vol. 22, pp. 31823187, 2007.10.1016/j.bios.2007.02.015Google Scholar
[6] Hyungsoon, X.J. H. Im, Bonsang Gu and Choi, Yang-Kyu, “A dielectricmodulated field-effect transistor for biosensing,” Nature Nanotechnology, vol. 2, p. 5, 2007.Google Scholar
[7] Cheng, Y. Xiong, P. Yun, C. S. Strouse, G. F. Zheng, J. P. Yang, R. S. and Wang, Z. L.Mechanism and Optimization of pH Sensing Using SnO2 Nanobelt Field Effect Transistors,” Nano. Lett., vol. 8, pp. 41794184, 2008.10.1021/nl801696bGoogle Scholar
[8] Yoon, H. Kim, J. Lee, N. Kim, B. and Jang, J.A Novel Sensor Platform Based on Aptamer-Conjugated Polypyrrole Nanotubes for Label-Free Electrochemical Protein Detection,” Chembiochem, vol. 9, pp. 634641, 2008.10.1002/cbic.200700660Google Scholar
[9] Xuan, G. Kolodzey, J. Kapoor, V. and Gonye, G.Characteristics of field-effect devices with gate oxide modification by DNA,” Applied Physics Letters, vol. 87, pp. 103903103905, 2005.10.1063/1.2041826Google Scholar
[10] Sakata, T. Kamahori, M. and Miyahara, Y.DNA Analysis Chip Based on Field-Effect Transistors,” Japanese Journal of Applied Physics, vol. 44, pp. 28542859, 2005.10.1143/JJAP.44.2854Google Scholar
[11] Baur, G. S. B. Hernando, J. Purrucker, O. Tanaka, M. Nickel, B. Stutzmann, M. and Eickhoff, M., “Chemical functionalization of GaN and AlN surfaces,” Applied Physics Letters, vol. 87, pp. 263901263903, 2005.10.1063/1.2150280Google Scholar
[12] Bujoli, B. Lane, S. M. Nonglaton, G. Pipelier, M. Leger, J. Talham, D. R. and Tellier, C.Metal Phosphonates Applied to Biotechnologies: A Novel Approach to Oligonucleotide Microarrays,” Chem. Eur. J., vol. 11, pp. 19801989, 2005.10.1002/chem.200400960Google Scholar
[13] Rao, K. S. Rani, S. U. Charyulu, D. K. Kumar, K. N. Lee, H. and Kawai, T.A novel route for immobilization of oligonucleotides onto modified silica nanoparticles,” Analytica Chimica Acta, vol. 576, p. 7, 2006.10.1016/j.aca.2006.06.019Google Scholar
[14] Jespersen, M. L. Inman, C. E. Kearns, G. J. Foster, E. W. and Hutchison, J. E.Alkanephosphonates on Hafnium-Modified Gold: A New Class of Self-Assembled Organic Monolayers,” J. AM. CHEM. SOC., vol. 129, p. 5, 2007.10.1021/ja065598aGoogle Scholar
[15] Xu, X. Jindal, V. F. Shahedipour-Sandvik, Bergkvist, M. and Cady, N. C.Direct immobilization and hybridization of DNA on group III nitride semiconductorsApplied Surface Science, vol. 255, pp. 59055909, 2009.10.1016/j.apsusc.2009.01.029Google Scholar
[16] Rashband, W. S.Image J,” Bethesda, MD: US National Institutes of Health, 1997-2008.Google Scholar