Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T04:05:43.686Z Has data issue: false hasContentIssue false

Microbeam XAFS Investigations on Fluid Inclusions

Published online by Cambridge University Press:  15 February 2011

Robert A. Mayanovic
Affiliation:
Dept. of Physics and Astronomy, Southwest Missouri State University., Springfield, MO 65804.
Alan J. Anderson
Affiliation:
Geology Dept., St. Francis Xavier University., Antigonish, Nova Scotia B2G 2W5.
Saša Bajt
Affiliation:
Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637.
Get access

Abstract

In this paper, we discuss the use of x-ray absorption fine structure (XAFS) techniques for the determination of structure of metal complexes in fluid inclusions heated to elevated temperatures. Analysis of Zn K-edge XAFS spectra measured from a single hypersaline fluid inclusion in quartz shows that the ZnCl42- complex is dominant at all temperatures up to and including 430 °C. The Zn-Cl bond length was found to decrease uniformly with temperature, up to nearly 2% at 430 °C in comparison to the value at 25 °C. The Zn-Cl mean-square relative displacement increased linearly with temperature, from a value of 0.0043 Å2 at 25 °C to 0.0089 Å2 at 430 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barnes, H.L., Geochemistry of Hydrothermal Ore Deposits (Wiley, New York, 1979) 404.Google Scholar
2. Lasaga, A.C., J. Geophys. Res. B6 (1984) 4009.Google Scholar
3. Crerar, D., Wood, S., Brantley, S., and Bocarsly, A., Can. Mineral. 23 (1985) 333.Google Scholar
4. Ruaya, J.A. and Seward, T.M., Geochim. Cosmochim. Acta. 50 (1986) 651.Google Scholar
5. Susak, N.J. and Crerar, D.A., Geochim. Cosmochim. Acta. 49 (1985) 555; C.A. Heinrich and T.M. Seward, Geochim. Cosmochim. Acta. 54 (1990) 2207.Google Scholar
6. Quicksall, C.O. and Spiro, T.G., Inorg. Chem. 5, (1966) 2232; T. Yamaguchi, S. Hayashi, and H. Ohtaki, J. Phys. Chem, 93 (1989)2620.Google Scholar
7. Magini, M., Licheri, G., Paschina, G., Piccaluga, G., and Pinna, G. in, X-ray Diffraction of Ions in Aqueous Solutions: Hydration And Complex Formation, Magini, M. ed., (CRC, Boca Raton, 1988).Google Scholar
8. Kaatze, U. and Wehrmann, B., Zeitsch. Phys. Chem. 177, (1992) 9.Google Scholar
9. Eisenberger, P. and Kincaid, B.M., Chem. Phys. Lett. 36 (1975) 134; M.J. Apted, G.A. Waychunas, and G.E. Brown, Geochim. Cosmochim. Acta. 49 (1985) 2081; P. Lagarde, in Ordering and Organization in Ionic Solutions. Proceedings of the 19th Yamada Conference, Kyoto, N. Ise and I. Sogami, eds., (World Scientific, Singapore, 1987) 29.Google Scholar
10. Neilson, G.W., J. Phys. C 15 (1982) L233.Google Scholar
11. Li, Z. and Popov, A.I., J. Soln. Chem. 11 (1982) 17.Google Scholar
12. Mayanovic, R.A., Anderson, A.J., and Bajt, S., Physica B Physica B 208 & 209 (1995)239.Google Scholar
13. Anderson, A.J., Mayanovic, R.A., and Bajt, S., Can. Mineral. 33 (1995) 499.Google Scholar
14. Anderson, A.J. and Bodnar, R.J., Am. Min., 78 (1993) 657.Google Scholar
15. Anderson, A.J., Mayanovic, R.A., and Bajt, S., unpublished.Google Scholar
16. Sayers, D.E. and Bunker, B.A., in X-Ray Absorption: Principles. Applications. Techniques of EXAFS. SEXAFS. and XANES, Koningsberger, D.C. and Prins, R., eds., (John Wiley & Sons, New York, 1988), p. 211.Google Scholar
17. Leon, J. Mustre de, Rehr, J.J., Zabinsky, S.I., and Albers, R.C., Phys. Rev. B 44 (1991) 4146.Google Scholar
18. Bourcier, W.L. and Barnes, H.L., Econ. Geol. 82 (1987) 1839.Google Scholar
19. Boland, J.J. and Balderschweiler, J.D., J. Chem. Phys. 80 (1984) 3005.Google Scholar