Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T13:57:10.093Z Has data issue: false hasContentIssue false

MgH2 by Gas Phase Condensation: Nanostructure Morphology and Hydrogen Sorption Behaviour

Published online by Cambridge University Press:  01 February 2011

Ennio Bonetti
Affiliation:
[email protected], Università di Bologna, Department of Physics, viale Berti Pichat 6/2, Bologna, 40127, Italy
Elsa Callini
Affiliation:
[email protected], Universita' di Bologna and CNISM, Department of Physics, viale Berti Pichat 6/2, Bologna, 40127, Italy
Amelia Montone
Affiliation:
[email protected], ENEA, FIM Department, C.R. Casaccia C.P. 2400, Rome, 00123, Italy
Luca Pasquini
Affiliation:
[email protected], Universita' di Bologna and CNISM, Department of Physics, viale Berti Pichat 6/2, Bologna, 40127, Italy
Emanuela Piscopiello
Affiliation:
[email protected], ENEA, C.R. Brindisi, via Appia km 706, Brindisi, 72100, Italy
Marco Vittori Antisari
Affiliation:
[email protected], ENEA, FIM Department, C.R. Casaccia C.P. 2400, Rome, 00123, Italy
Get access

Abstract

Inert gas condensation was employed to prepare nanoparticles of Mg and MgH2 which morphology, clustering degree and structural stability have been investigated by X-ray diffraction and electron microscopy. Thermodynamic functional properties of the Mg and MgH2 nanostructured samples were investigated by high pressure differential scanning calorimetry. Some specific features of the morphology of the samples prepared by inert gas condensation are compared with powders obtained by ball milling through desorption kinetics behavior.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schulz, R., Boily, S., Zaluski, L., Zaluska, A., Tessier, P., Olsen, J.O. Strom, Innovation Met., Mater., (1995) 529.Google Scholar
2. Liang, G., Huot, J., Boily, S., Schulz, R., J. Alloy. Compd. 305 (2000) 239.Google Scholar
3. Zaluska, A., Zaluski, L., Olsen, J.O. Strom, Appl. Phys. A, 72 (2001) 157.10.1007/s003390100783Google Scholar
4. Bobet, J.L., Akiba, E., Darriet, B., Int. J. Hydrogen Energy, 26 (2001) 493.Google Scholar
5. Oelerich, W., Klassen, T., Bormann, R., J. Alloys Compd. 315 (2001) 237.Google Scholar
6. Fujii, H., Orimo, S., Physica B, 328 (2003) 77.Google Scholar
7. Cecchetto, R., Bazzanella, N., Miotello, A., Maurizio, C., D'Acapito, F., Mengucci, P., Barucca, G., and Majni, G., Appl. Phys. Lett. 87 (2005) 061904.Google Scholar
8. Friedrichs, O., Kolodziejczyk, L., Lopez, J.C. Sanchez, Cartez, C. Lopez, Fernandez, A., J. Alloys. Compd., 434 (2007) 721.Google Scholar
9. Barkhordarian, G., Klassen, T., Bormann, R., Scripta Mat., 49 (2003) 2013.Google Scholar
10. Bassetti, A., Bonetti, E., Pasquini, L., Montone, A., Grbovic, J., Vittori, M. Antisari, Eur. Phys. J. B, 43 (2005) 19.Google Scholar
11. Hanada, N., Ichikawa, T., Fujii, H., J. Phys. Chem B, 109 (2005) 7188.Google Scholar
12. Barkhordarian, G., Klassen, T., Bormann, R., J. Alloy Compd., 407 (2006) 249.Google Scholar
13. Bazzanella, N., Checchetto, R., Miotello, A., Sada, G., Mazzoldi, P., Mengucci, P., Appl. Phys. Lett., 89 (2006) 014101.Google Scholar
14. Montone, A., Grbovic Novakovic, J., Vittori Antisari, M., Bassetti, A., Bonetti, E., Fiorini, A.L., Mirenghi, L., Rotolo, P., Int. J. Hydrogen Energy (2007).Google Scholar
15.URL: http://www.cantil.itGoogle Scholar
16. Schroder, E., Fasel, R., Kiejna, , Phys. Rev. B, 69 (2004) 193405.Google Scholar