Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:55:36.017Z Has data issue: false hasContentIssue false

Metastable Materials Formation by ion Beam Assisted Deposition: Application to M Clusters in Ceramic Matrices

Published online by Cambridge University Press:  10 February 2011

C. A. Carosella
Affiliation:
Surface Modification Branch, US Naval Research Laboratory, Washington, DC 20375
G. K. Hubler
Affiliation:
Surface Modification Branch, US Naval Research Laboratory, Washington, DC 20375
C. M. Cotell
Affiliation:
Surface Modification Branch, US Naval Research Laboratory, Washington, DC 20375
S. Schiestel
Affiliation:
University of Heidelberg, Germany
Get access

Abstract

The collision cascade, the fundamental event in ion-solid interactions, is responsible for the beneficial effects on thin films deposited by low energy ion beam assisted deposition (IBAD) or by energetic ion assisted deposition processes in general. However, the fundamental implications of the marriage of collision cascades and film growth processes have yet to be fully realized. The first half of this paper reviews the effects of ion bombardment on film growth and reaches some new conclusions. We propose that IBAD represents a different ion-solid interaction in a fundamental sense, and that as such, it should lead to new microstructures unattainable by other materials synthesis methods.

The second part of this paper discusses the deposition of metal nanoclusters in a dielectric matrix by means of beam assisted phase separation (BAPS), a term coined here to describe deposition of phase-separated multicomponent materials. Examples discussed are gold nanoparticles in both niobium oxide and silica matrices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tanabe, N. and Iwaki, M., Nucl. Instrm. Methods Phys. Res. B80/81, 1349 (1993).Google Scholar
2. Donovan, E. P., Hubler, G. K., Mudholkar, M., et al., Surf. Coat. Technol., 66, 499 (1994).Google Scholar
3. Guarnieri, C. R., Offsey, S. D., and Cuomo, J. J., in MRS Bull. (Rossnagel, S.M. and Cuomo, J.J., 1987), Vol.12, p. 40.Google Scholar
4. Mattox, D. M., (Sandia Corp., 1963).Google Scholar
5. Smidt, F. A., Int. Mat. Rev. 35, 61 (1990).Google Scholar
6. Hirvonen, J. K., Mat. Sci. Rep. 6, 215 (1991).Google Scholar
7. Hubler, G. K., in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by Jacobson, D. C., Luzzi, D. E., Heinz, T. F. and Iwaki, M. (MRS, 1995), Vol. Vol.354, p. 45.Google Scholar
8. Hubler, G. K. and Sprague, J. A., Surf. & Coatings Technol. 81, 29 (1996).Google Scholar
9. Hubler, G. K., in American Society of Metals Annual Meeting (ASM, Cleveland OH, 1996).Google Scholar
10. Hubler, G. K. and Hirvonen, J. K., Ion Beam Assisted Deposition (American Society of Metals, Metals Park, OH, 1994).Google Scholar
11. Picraux, S. T., in Site Characterization and Aggregation of Implanted Atoms in Materials, edited by Coussement, A. P. a. R. (Plenum, NY, 1980), p. 325.Google Scholar
12. Picraux, S. T., in Site Characterization and Aggregation of Implanted Atoms in Materials, edited by Coussement, A. P. a. R. (Plenum, NY, 1980), p. 307.Google Scholar
13. Holland, J. R., Mansur, L. K., and Potter, D. I., (AIME, New York, NY, 1981).Google Scholar
14. Nelson, R. S., in Radiation Processes in Materials, edited by Dupuy, C. H. S. (Noordhoff, Leyden, 1975), p. 477.Google Scholar
15. Wiedersich, H. and Okamoto, P. R., in Phase Stability During Irradiation, edited by Holland, J. R., Mansur, L. K. and Potter, D. I. (AIME, New York, 1981), p. 2341.Google Scholar
16. Grant, W. A., Nucl. Instrum. & Meth. 182/183, 809825 (1981).Google Scholar
17. Grant, W. A., Whitton, J. L., and Williams, J. S., Rad. Eff. 49, 65 (1980).Google Scholar
18. Mayer, J. W., Tsaur, B. Y., Lau, S. S., et al., Nucl. Instrum. & Meth. 182/183, 113 (1981).Google Scholar
19. Cheng, Y.-T., Rossum, M. V., Nicolet, M. A., et al., Appl. Phys. Lett. 45, 185 (1984).Google Scholar
20. Cheng, Y.-T., Simko, S. T., Militello, M. C., et al., Nucl. Inst. Meth. Phys. Res. B64, 38 (1992).Google Scholar
21. Bohren, C. F. and Huffman, D. R., Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
22. Haglund, R. F., , L. Y. Jr., Magruder, I. R.H., et al., Nuc. Instr. Methods in Phys. Res. B91, 493504 (1994).Google Scholar
23. Yang, L., Becker, K., Smith, F. M., et al., J. Opt. Soc. Am. B 11(3), 457461 (1994).Google Scholar
24. Magruder, R. H., , I., Haglund, J. R.F., et al., J. Appl. Phys. 76(2), 708715 (1994).Google Scholar
25. Haglund, R. F., L. Y. Jr., Magruder, I. R.H., et al., Opt. Lett. 18, 373 (1993).Google Scholar
26. Flytzanis, C., Hache, F., Klein, M. C., et al., in Progress in Optics, edited by Wolf, E. (North-Holland, Amsterdam, 1991), Vol. Vol.29.Google Scholar
27. Cotell, C. M., Carosella, C. A., Flom, S. R., et al., in Ion Solid Interactions for Materials Modification and Processing, edited by Ila, D. B. P. D., Harriott, L.R., and Cheng, Y.- T.(Materials Research Society, Boston, MA, 1996), Vol. Vol.396.Google Scholar
28. Kreibig, U., J. de Physique C-2 38, 97103 (1977).Google Scholar
29. Martin, P. J., J. Mat. Sci. 21, 125 (1986).Google Scholar