Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T01:22:47.573Z Has data issue: false hasContentIssue false

Metal-Semiconductor-Metal (MSM) Photodetectors Based on Single-walled Carbon Nanotube Film-GaAs Schottky Contacts

Published online by Cambridge University Press:  01 February 2011

Jason L. Johnson
Affiliation:
[email protected], University of Florida, Electrical and Computer Engineering, 530 ENG Bldg. #33, Gainesville, FL, 32611, United States
Ashkan Behnam
Affiliation:
[email protected], University of Florida, Electrical and Computer Engineering, Gainesville, FL, 32611, United States
Yongho Choi
Affiliation:
[email protected], University of Florida, Electrical and Computer Engineering, Gainesville, FL, 32611, United States
Leila Noriega
Affiliation:
[email protected], University of Florida, Electrical and Computer Engineering, Gainesville, FL, 32611, United States
Gunhan Ertosun
Affiliation:
[email protected], Stanford University, Department of Electrical Engineering, Stanford, CA, 94305, United States
Zhuangchun Wu
Affiliation:
[email protected], University of Florida, Department of Physics, Gainesville, FL, 32611, United States
Andrew G. Rinzler
Affiliation:
[email protected], University of Florida, Department of Physics, Gainesville, FL, 32611, United States
Pawan Kapur
Affiliation:
[email protected], Stanford University, Department of Electrical Engineering, Stanford, CA, 94305, United States
Krishna C. Saraswat
Affiliation:
[email protected], Stanford University, Department of Electrical Engineering, Stanford, CA, 94305, United States
Ant Ural
Affiliation:
[email protected], University of Florida, Electrical and Computer Engineering, Gainesville, FL, 32611, United States
Get access

Abstract

We experimentally study the dark and photocurrent in metal-semiconductor-metal (MSM) photodetectors based on single-walled carbon nanotube film Schottky contacts on GaAs. We find that above ∼260°K, thermionic emission of electrons with a barrier height of ∼0.54 eV is the dominant dark current transport mechanism. Furthermore, MSM devices with CNT film electrodes exhibit a higher photocurrent-to-dark current ratio while maintaining a comparable responsivity relative to control devices. This work demonstrates that nanotube films can be integrated as Schottky electrodes in conventional semiconductor optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, Z.; Chen, Z.; Du, X.; Logan, J.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J.; Tanner, D.; Hebard, A.; Rinzler, A. Science 305, 1273 (2004).Google Scholar
2. Bekyarova, E.; Itkis, M. E.; Cabrera, N.; Zhao, B.; Yu, A. P.; Gao, J. B.; Haddon, R. C. J. Am. Chem. Soc. 127, 5990 (2005).Google Scholar
3. Grüner, G. J. Mater. Chem. 16, 3533 (2006).Google Scholar
4. Liu, J.; Fan, S.; Dai, H. MRS Bulletin 29, 244 (2004).Google Scholar
5. Fanchini, G.; Unalan, H. E.; Chhowalla, M. Appl. Phys. Lett. 88, 191919 (2006).Google Scholar
6. Lee, K.; Wu, Z.; Chen, Z.; Ren, F.; Pearton, S. J.; Rinzler, A. G. Nano Lett. 4, 911. (2004).Google Scholar
7. Li, J.; Hu, L.; Wang, L.; Zhou, Y.; Grüner, G; Marks, T. J. Nano Lett. 6, 2472 (2006).Google Scholar
8. Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. Nano Lett. 6, 1880 (2006).Google Scholar
9. Aguirre, C. M.; Auvray, S.; Pigeon, S.; Izquierdo, R.; Desjardins, R.; Martel, R. Appl. Phys. Lett. 88, 183104 (2006).Google Scholar
10. Pasquier, A. D.; Unalan, H. E.; Kanwal, A.; Miller, S.; Chhowalla, M. Appl. Phys. Lett. 87, 203511 (2005).Google Scholar
11. Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H. J.; Dennler, G.; Sariciftci, N. S.; Hu, L.; Grüner, G. Appl. Phys. Lett. 88, 233506 (2006).Google Scholar
12. Chaudhary, S; Lu, H; Müller, A. M.; Bardeen, C. J.; Ozkan, M. Nano Lett. 7,1973 (2007).Google Scholar
13. Barnes, T. M.; Wu, X.; Zhou, J.; Duda, A.; van de Lagemaat, J.; Coutts, T. J.; Weeks, C. L.; Britz, D. A.; Glatkowski, P. Appl. Phys. Lett. 90, 243503 (2007).Google Scholar
14. Hu, L.; Grüner, G.; Li, D.; Kaner, R. B.; Cech, J. J. Appl. Phys 101, 016102 (2007).Google Scholar
15. Barone, V.; Peralta, J. E.; Uddin, J.; Gustavo, E. S. J. Chem. Phys. 124, 024709 (2006).Google Scholar
16. Shan, B.; Cho, K. Phys. Rev. Lett. 94, 236602 (2005).Google Scholar
17. Behnam, A.; Noriega, L.; Choi, Y.; Wu, Z.; Rinzler, A. G.; Ural, A. Appl. Phys. Lett. 89, 093107 (2006).Google Scholar
18. Behnam, A.; Choi, Y.; Noriega, L.; Wu, Z.; Kravchenko, I.; Rinzler, A. G.; Ural, A. J. Vac. Sci. Technol. B 25, 348 (2007).Google Scholar
19. Wohlmuth, W. A.; Fay, P.; Adesida, I. IEEE Photon. Technol. Lett. 8, 1061 (1996).Google Scholar
20. Sze, S. M.; Coleman, D. J.; Loya., A. Solid-State Electron. 14, 1209 (1971).Google Scholar
21. Ito, M.; Wada, O. IEEE J. Quantum Electron. 22, 1073 (1986).Google Scholar
22. Klingenstein, M.; Kuhl, J.; Rosenzweig, J.; Moglestue, C.; Hülsmann, A.; Schneider, J.; Kühler, K. Solid-State Electron. 37, 333 (1994).Google Scholar
23. Burm, J.; Eastman, L. F. IEEE Photon. Technol. Lett. 8, 113 (1996).Google Scholar
24. Dio, M. D.; Cola, A.; Lupo., M. G.; Vasanelli, L. Solid-State Electron. 38, 1923(1995).Google Scholar