No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We experimentally study the dark and photocurrent in metal-semiconductor-metal (MSM) photodetectors based on single-walled carbon nanotube film Schottky contacts on GaAs. We find that above ∼260°K, thermionic emission of electrons with a barrier height of ∼0.54 eV is the dominant dark current transport mechanism. Furthermore, MSM devices with CNT film electrodes exhibit a higher photocurrent-to-dark current ratio while maintaining a comparable responsivity relative to control devices. This work demonstrates that nanotube films can be integrated as Schottky electrodes in conventional semiconductor optoelectronic devices.