Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T04:12:32.275Z Has data issue: false hasContentIssue false

Metal-Semiconductor-Insulator-Metal Structure Field-Effect Transistors Based on Zinc Oxides and Doped Ferroelectric Thin Films

Published online by Cambridge University Press:  04 February 2014

Ze Jia*
Affiliation:
School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
Jianlong Xu
Affiliation:
Institute of Microelectronics, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, 100084, China
Xiao Wu
Affiliation:
School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
Mingming Zhang
Affiliation:
Institute of Microelectronics, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, 100084, China
Naiwen Zhang
Affiliation:
Institute of Microelectronics, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, 100084, China
Jizhi Liu
Affiliation:
School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
Zhiwei Liu
Affiliation:
School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
Juin J. Liou
Affiliation:
Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida 32816, USA
*
*Corresponding author’s E-mail: [email protected]
Get access

Abstract

Different ferroelectric thin films and their related Metal-Semiconductor-Insulator-Metal (MSIM) structures include zinc oxide (ZnO) are studied, which can be utilized in back-gated ferroelectric field-effect transistors (FETs). The most ideal zinc oxide (ZnO) thin film prepared by sol-gel method are obtained under the pyrolysis temperature of 400°C and the annealing temperature of 600°C. The asymmetric or symmetric current-voltage characteristics of the heterostructures with ZnO are exhibited depending on different ferroelectric materials in them. The curves of drain current versus gate voltage for MSIM-structure FETs are investigated, in which obvious counterclockwise loops and a drain current switching ratio up to two orders of magnitude ate observed due to the modulation effect of remnant polarization on the channel resistance. The results also indicate the positive influences of impurity atom substitution in bismuth ferrite thin film for the MSIM-structure FETs.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lu, D.D., Dunga, M.V., Lin, C.H., Niknejad, A.M. and Hu, C.M., Solid-State Electron. 62 (1), 31 (2011).CrossRefGoogle Scholar
Yang, I.Y., Vieri, C., Chandrakasan, A. and Antoniadis, D.A., IEEE Trans. Electron Devices 44 (5), 822 (1997).CrossRefGoogle Scholar
Chen, H.P., Lee, V.C., Ohoka, A., Xiang, J. and Taur, Y., IEEE Trans. Electron Devices 58 (8), 2401 (2011).CrossRefGoogle Scholar
Fu, W.Y., Xu, Z., Bai, X.D., Gu, C.Z. and Wang, E., Nano Lett. 9 (3), 921 (2009).CrossRefGoogle Scholar
Jia, Z., Zhang, M.M. and Ren, T.L., Ferroelectrics. 421 (1), 92 (2011).CrossRefGoogle Scholar
Zhang, N.W., Jia, Z., Zhang, M.M. and Ren, T.L., Mater. Res. Soc. Proc. 1368 (1), (2011).CrossRefGoogle Scholar
Xu, J.L., Jia, Z., Zhang, N.W. and Ren, T.L., J. Appl. Phys. 111 (7), 074101 (2012).CrossRefGoogle Scholar
Ryu, Y., Lee, T.S., Lubguban, J.A., White, H.W., Kim, B.J., Park, Y.S. and Youn, C.J., Appl. Phys. Lett. 88 (24), 241108 (2006).CrossRefGoogle Scholar
Kim, I.D., Choi, Y.W. and Tuller, H.L., Appl. Phys. Lett. 87 (4), 043509 (2005).CrossRefGoogle Scholar
Pintilie, L., Dragoi, C., Radu, R., Costinoaia, A., Stancu, V. and Pintilie, I., Appl. Phys. Lett. 96 (1), 012903 (2010).CrossRefGoogle Scholar
Kato, Y., Kaneko, Y., Tanaka, H. and Shimada, Y., Jpn. J. Appl. Phys. 47, 2719 (2008).CrossRefGoogle Scholar
Jia, Z., Ren, T.L., Zhang, Z.G., Liu, T.Z., Wen, X.Y., Hu, H. and Liu, L.T., J. Phys. D: Appl. Phys. 39 (12), 2587 (2006).CrossRefGoogle Scholar
Zhang, M.M., Jia, Z. and Ren, T.L., Solid-State Electron. 53 (5), 473 (2009).CrossRefGoogle Scholar
Jia, Z., Ren, T.L., Liu, T.Z., Hong, H.U., Zhang, Z.G., Xie, D. and Liu, L.T., Chin. Phys. Lett. 23 (4), 1042 (2006).CrossRefGoogle Scholar
Choi, T., Lee, S., Choi, Y.J., Kiryukhin, V. and Cheong, S.W., Science. 324 (5923), 63 (2009).CrossRefGoogle Scholar
Catalan, G. and Scott, J.F., Adv. Mater. 21 (24), 2463 (2009).CrossRefGoogle Scholar
Uchida, H., Ueno, R., Funakubo, H. and Koda, S., J. Appl. Phys. 100 (1), 014106 (2006).CrossRefGoogle Scholar
Yun, K.Y., Noda, M. and Okuyama, M., J. Korean Phys. Soc. 42, 1153 (2003).Google Scholar
Palkar, V.R., John, J. and Pinto, R., Appl. Phys. Lett. 80 (9), 1628 (2002).CrossRefGoogle Scholar
Wang, Y.P., Zhou, L., Zhang, M.F., Chen, X.Y., Liu, J.M. and Liu, Z.G., Appl. Phys. Lett. 84, 1731 (2004).CrossRefGoogle Scholar
Qi, X.D., Dho, J., Tomov, R., Blamire, M.G. and MacManus-Driscoll, J.L., Appl. Phys. Lett. 86 (6), 062903 (2005).CrossRefGoogle Scholar