Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:26:17.970Z Has data issue: false hasContentIssue false

Metalorganic vapor phase epitaxial growth of GaInN/GaN hetero structures and quantum wells

Published online by Cambridge University Press:  10 February 2011

F. Scholz
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
V. HÄrle
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
F. Steuber
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
A. Sohmer
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
H. Bolay
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
V. Syganow
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
A. DÖrnen
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
J.-S. Im
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
A. Hangleiter
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
J-Y. Duboz
Affiliation:
Thomson CSF, Physics Lab, Lab. Central de Recherche, F-91404 Orsay, France
P. Galtier
Affiliation:
Thomson CSF, Physics Lab, Lab. Central de Recherche, F-91404 Orsay, France
E. Rosencher
Affiliation:
Thomson CSF, Physics Lab, Lab. Central de Recherche, F-91404 Orsay, France
O. Ambacher
Affiliation:
Walter-Schottky-Institut, TU München, D-85748 München, Germany
D. Brunner
Affiliation:
Walter-Schottky-Institut, TU München, D-85748 München, Germany
H. Lakner
Affiliation:
Werkstoffe der Elektrotechnik / FB9, Gerhard Mercator Universität, D-47048 Duisburg, Germany
Get access

Abstract

GaInN/GaN heterostructures and quantum wells have been grown by low pressure metalorganic vapor phase epitaxy on sapphire using an AIN nucleation layer. We found a significant In incorporation only for growth temperatures of 700°C, although still very high In/Ga ratios in the gas phase had to be adjusted. The In content could be increased by reducing the H2/N2 flow ratio in the main carrier gas. GaInN layers typically show two lines in low temperature photoluminescence which are identified as excitonic-like (high energy peak) and impurity-related-like (low energy) by time-resolved spectroscopy. Quantum wells with a thickness between 8 and 0.5 nm showed only one emission line. The peak of the thinnest wells shows excitonic-like behaviour, whereas we found a smooth transition to an impurity-related-like type with increasing thickness. By scanning transmission electron microscopy studies we found indications for composition fluctuations in these thicker quantum wells which may cause localization effects for the excitons and thus be responsible for the observed optical spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., Mukai, T., Jpn. J. Appl. Phys. 34 (1995) L1332.Google Scholar
[2] Nakamura, S., Mukai, T., Senoh, M., J. Appl. Phys. 76 (1994) 8189.Google Scholar
[3] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Jpn. J. Appl. Phys. 35 (1996) L74.Google Scholar
[4] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Jpn. J. Appl. Phys. 35 (1996) L217.Google Scholar
[5] Stringfellow, G.B., Organometallic vapor phase epitaxy (Academic Press, San Diego, 1989), p. 116.Google Scholar
[6] Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett. 64 (1994) 1687.Google Scholar
[7] Keller, S., Keller, B.P., Kapolnek, D., Abare, A.C., Masui, H., Coldren, L.A., Mishra, U.K., DenBaars, S.P., Appl. Phys. Lett. 68 (1996) 3147.Google Scholar
[8] Yuan, C., Salagaj, T., Kroll, W., Stall, R.A., Schurman, M., Hwang, C.-Y., Li, Y., Mayo, W.E., Lu, Y., Krishnankutty, S., Kolbas, R.M., J. Electron. Mat. 25 (1996) 749.Google Scholar
[9] McIntosh, F.G., Boutros, K.S., Roberts, J.C., Bedair, S.M., Piner, E.L., El-Masry, N.A., Appl. Phys. Lett. 68 (1996) 40.Google Scholar
[10] Matsuoka, T., Tanaka, H., Sasaki, T., Katsui, A., Inst. Phys. Conf. Ser. No. 106: Chapter 3 (1989), p. 141.Google Scholar
[11] Ho, I-hsiu, Stringfellow, G.B., Appl. Phys. Lett. 69 (1996) 2701.Google Scholar
[12] Strite, S., Morkoc, H., J. Vac. Sci. Technol. B 10 (1992) 1237.Google Scholar
[13] Koukitu, A., Takahashi, N., Taki, T., Seki, H., Jpn. J. Appl. Phys. 35 (1996) L673.Google Scholar
[14] Scholz, F., Härle, V., Bolay, H., Steuber, F., Kaufmann, B., Reyher, G., Dörnen, A., Gfrörer, O., Im, S.-J., Hangleiter, A., Solid State Electronics (1996), Proc. TWN ‘95, Nagoya, Japan, 1995 (in print).Google Scholar
[15] Scholz, F., Härle, V., Steuber, F., Bolay, H., Dornen, A., Kaufmann, B., Syganow, V., Hangleiter, A., J. Crystal Growth (1996), Proc. ICMOVPE VIII, Cardiff, Wales, 1996 (in print).Google Scholar
[16] Hangleiter, A., Im, J.S., Forner, T., Härle, V., Scholz, F., Mat. Res. Soc. Symp. Proc. Vol. 395, p. 559(1996).Google Scholar
[17] Frankowsky, G., Steuber, F., Härle, V., Scholz, F., Hangleiter, A., Appl. Phys. Lett. 68 (1996) 3746.Google Scholar
[18] Hangleiter, A., Scholz, F., Härle, V., Im, J.S., Frankowsky, G., these proceedingsGoogle Scholar
[19] Im, J.S., Moritz, A., Steuber, F., Harle, V., Scholz, F., Hangleiter, A., to be published in Appl. Phys. Lett.Google Scholar
[20] Ambacher, O., Rieger, W., Ansmann, P., Angerer, H., Moustakas, T.D., Stutzmann, M., Solid State Comm. 97 (1996) 365.Google Scholar
[21] see, e.g., Hardtdegen, H., Giannoules, P., III-Vs Review 8 (1995) 34 and references therein.Google Scholar
[22] Nakamura, S., Mukai, T., Jpn. J. Appl. Phys. 31 (1992) L1457.Google Scholar
[23] Matsuoka, T., Yoshimoto, N., Sasaki, T., Katsui, A., J. Electron. Mat. 21 (1992) 157.Google Scholar
[24] Yuan, C., Salagaj, T., Kroll, W., Stall, R.A., Schurman, M., Hwang, C.-Y., Li, Y., Mayo, W.E., Lu, Y., Krishnankutty, S., Kolbas, R.M., J. Electron. Mat. 25 (1996) 749.Google Scholar
[25] Koukitu, A., Takahashi, N., Taki, T., Seki, H., J. Crystal Growth (1996), Proc. ICMOVPE VIII, Cardiff, Wales, 1996 (in print).Google Scholar
[26] Ernst, P., Geng, C., Hahn, G., Scholz, F., Schweizer, H., Phillipp, F., Mascarenhas, A., J. Appl. Phys. 79 (1996) 2633.Google Scholar
[27] Nakamura, S., contribution to the Semiconductor Laser Conference, Haifa, Israel, Oct. 1996.Google Scholar
[28] see e.g. Leonard, D., Pond, K., Petroff, P.M., Phys. Rev. B 50 (1994) 11687.Google Scholar