Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T09:11:01.712Z Has data issue: false hasContentIssue false

Metal-Organic Chemical Vapor Deposition of Epitaxial Tl2Ba2Ca2Cu3O10−x Thin Films

Published online by Cambridge University Press:  15 February 2011

Bruce J. Hinds
Affiliation:
Department of Chemistry, Science and Technology Center for Superconductivity and the Materials Research Center, Northwestern University, Evanston, IL 60208-3118
Jon L. Schindler
Affiliation:
Department of Electrical Engineering and Computer Science, Science and Technology Center for Superconductivity and the Materials Research Center, Northwestern University, Evanston, IL 60208-3118
Bin Han
Affiliation:
Department of Electrical Engineering and Computer Science, Science and Technology Center for Superconductivity and the Materials Research Center, Northwestern University, Evanston, IL 60208-3118
Deborah A. Neumayer
Affiliation:
Department of Chemistry, Science and Technology Center for Superconductivity and the Materials Research Center, Northwestern University, Evanston, IL 60208-3118
Donald C. Degroot
Affiliation:
Department of Electrical Engineering and Computer Science, Science and Technology Center for Superconductivity and the Materials Research Center, Northwestern University, Evanston, IL 60208-3118
Tobin J. Marks
Affiliation:
Department of Chemistry, Science and Technology Center for Superconductivity and the Materials Research Center, Northwestern University, Evanston, IL 60208-3118
Carl. R. Kannewurf
Affiliation:
Department of Electrical Engineering and Computer Science, Science and Technology Center for Superconductivity and the Materials Research Center, Northwestern University, Evanston, IL 60208-3118
Get access

Abstract

Superconducting thin films of Tl2Ba2Ca2Cu3O10−x (TL-2223) have been grown on single crystal (110) LaAlO3 using a two-step process. Ba2Ca2Cu3Ox precursor films are deposited via metal-organic chemical vapor deposition (MOCVD) in a horizontal hot walled reactor. The second generation precursors Ba(hfa)2•tet, Ca(hfa)2•tet, and Cu(hfa)2 (hfa = hexafluoroacetylacetonate, tet = tetraglyme) were used as volatile metal sources due to their superior volatility and stability. Tl was introduced into the film via a high temperature post anneal in the presence of a Tl2O3:BaO:CaO:CuO pellet (1:2:2:3 ratio). Low O2 partial pressures were used to reduce the temperature in which the TI-2223 phase forms and to improve the surface morphology associated with a liquid phase intermediate. Films are highly oriented with the c-axis perpendicular to the substrate and a-b axis epitaxy is seen from x-ray φ- scans. The best films have a resistively measured Tc of 115K and a magnetically derived Jc of 6×105 A/cm2 (77K, 0 T). Preliminary surface resistance measurements, using parallel plate techniques, give Rs = 0.35 mΩ at 5K (ω = 10 GHz).

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sheng, Z. Z., Hermann, A. M., Nature 332, 55 (1988).Google Scholar
2. Okada, M., Nabatame, T., Yuasa, T., Aihara, K., Seido, M., Matsuda, S., Jap. J. Appl. Phys. 30, 2747 (1991).Google Scholar
3. Hammond, R. B., Hey-Shipton, G. L., Matthaei, G. L., IEEE Spectrum 30, 34 (1993).Google Scholar
4. Nabatame, T., Saito, Y., Kamo, T, Matsuda, S., Jpn. J. Appl. Phys. 29, L1813 (1990).Google Scholar
5. Lee, W. Y., Garrison, S. M., Kawasaki, M., Venturini, E. L., Ahn, B. T., Boyers, R., Appl. Phys. Lett. 60, 772 (1992).Google Scholar
6. DeLuca, J. A., Garbauskas, M. F., Bolon, R. B., McMullen, J. G., Balz, W. E., Karas, L., J. Mater. Res. 6, 1415 (1991).Google Scholar
7. Ginley, D. S, Kwak, J. F., Hellmer, R. P., Baughman, R. J., Venturini, E. L., Morosin, B., Appl. Phys. Lett. 53, 406 (1988).Google Scholar
8. Richeson, D. S., Wessels, B. W., Zhao, J., Zhang, J. M., Marcy, H. O., Marks, T. J., Tonge, L. M., Kannewurf, C. R., Appl. Phys. Lett. 54, 2154 (1989).Google Scholar
9. Malandrino, G., Richeson, D. S., Marks, T. J., Degroot, D. C., Schindler, J. L., Kannewurf, C. R., Appl. Phys. Lett. 58, 182 (1991).Google Scholar
10. Zhang, K., Boyd, E. P., Kwak, B. S., Wright, A. C., Erbil, A., Appl. Phys. Lett. 55, 1258 (1989).Google Scholar
11. Hamaguchi, N., Gardiner, R., and Kirlin, P. S., Appl. Surf. Sci. 48/49, 441 (1991).Google Scholar
12. Moffat, H., Jensen, K. F., J. Cryst. Growth, 77, 108 (1986).CrossRefGoogle Scholar
13. Ahn, B. T., Lee, W. Y., Beyers, R., Appl. Phys. Lett. 60, 2150 (1992).Google Scholar
14. Schulz, D. L, Richeson, D. S., Malandrino, G., Neumayer, D., Marks, T.J., Degroot, D.C., Schindler, J. L., Hogan, T. P., Kannewurf, C. R., Thin Solid Films 216, 45 (1992).Google Scholar
15. Morosin, B., Norton, M. G., Carter, C. B., Venturini, E. L., Ginley, D. S., J. Mater. Res. 8, 720 (1993).Google Scholar
16. Ashby, C. I. H., Martens, J., Plut, T. A., Ginley, D.S., Appl. Phys. Lett. 60, 2147 (1992).Google Scholar
17. Bean, C. P., Phys. Rev. Lett. 8, 250 (1962).CrossRefGoogle Scholar
18. The highest reported transport values for PVD-derived TI-2223 films are Tc = 121 K, Jc = l×106 A/cm2 (77K). Lee, W. Y., Garrison, S. M, Kawasaki, M., Venturini, E. L., Ahn, B. T., Boyers, R., Salem, J., Savoy, R., and Vazquez, J., Appl. Phys. Lett. 60, 772 (1992).Google Scholar
19. Holstein, W. L., Parisi, L. A., Wilker, C., Flippen, R. B., IEEE Trans. on Appl. Superconductivity 3, 1197 (1993), Rs = 0.024 mΩ ( 4.2K, 10GHz).Google Scholar