Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:19:45.401Z Has data issue: false hasContentIssue false

Metalorganic chemical vapor deposition of aluminum oxide on silicon nitride

Published online by Cambridge University Press:  11 February 2011

Anindya Dasgupta
Affiliation:
Department of Chemical Engineering, University of Illinois at Chicago, 810 South Clinton Street, Chicago, Illinois 60607.
Abhijit Roy Chowdhuri
Affiliation:
Department of Chemical Engineering, University of Illinois at Chicago, 810 South Clinton Street, Chicago, Illinois 60607.
Christos G. Takoudis
Affiliation:
Department of Chemical Engineering, University of Illinois at Chicago, 810 South Clinton Street, Chicago, Illinois 60607.
Get access

Abstract

Thin films of aluminum oxide were deposited on silicon nitride thin films using trimethylaluminum and oxygen at 0.5 Torr and 300 °C. Fourier transform infrared (FTIR) and x-ray photoelectron spectroscopic (XPS) analyses of these films showed no aluminum silicate phase at the film-substrate interface. The O/Al ratio in the deposited film was found to be higher than that in stoichiometric Al2O3 indicating the presence of excess oxygen. FTIR spectroscopy and XPS of the annealed samples did not show any formation of silicon oxide, oxynitride or silicate at the aluminum oxide/silicon nitride interface. In contrast to aluminum oxide on clean silicon substrates, using ultrathin silicon nitride as a barrier layer could prevent excess oxygen migration towards the Si substrate and formation of any interfacial layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilk, G. D., Wallace, R. M., Anthony, J. M., J. Appl. Phys. 89, 5243 (2001).Google Scholar
2. Guha, S., Cartier, E., Bojarczuk, N. A., Bruley, J., Gignac, L. and Karasinski, J., J. Appl. Phys. 90, 512 (2001).Google Scholar
3. Haanappel, V. A. C., van Corbach, H. D., Fransen, T. and Gellings, P. J., Surf. Coat. Tech. 72, 13 (1995).Google Scholar
4. Gusev, E P, Copel, M and Cartier, E, Appl. Phys. Lett. 76, 176 (2000).Google Scholar
5. Klein, T. M, Niu, D., Epling, W. S., Li, W., Maher, D. M., Hobbs, C. C., Hegde, R. I., Baumvol, I. J. R. and Parsons, G. N., Appl. Phys. Lett. 75, 4001 (1999).Google Scholar
6. Chowdhuri, A. Roy, Takoudis, C.G., Klie, R.F., Browning, N.D., Appl. Phys. Lett. 80, 4241 (2002)Google Scholar
7. Cui, Z., Madsen, J. and Takoudis, C.G., J. Appl. Phys. 87, 8181 (2000).Google Scholar
8. Kim, Y.-C., Park, H.-H., Chun, J. S. and Lee, W.-J., Thin Solid Films, 237, 57(1994).Google Scholar
9. Katz-Tsameret, Z. and Raveh, A., J. Vac. Sci. Technol. A 13, 1121 (1995).Google Scholar
10. Cueff, R., Baud, G., Benmalek, M., Besse, J. P., Butruille, J. R., Dunlop, H. M. and Jacquet, M., Thin Solid Films 270, 230 (1995).Google Scholar
11. Tarte, P., Spectrochim. Acta. 23A, 2127 (1967).Google Scholar
12. Morterra, C. and Magnacca, G., Catal. Today. 27, 497 (1996).Google Scholar
13. Kumar, M. P., Balasubramanian, C., Sali, N. D., Bhoraskar, S. V., Rohatgi, V. K. and Badrinarayanan, S., Mater. Sci. Eng. B63, 215 (1999).Google Scholar
14. Pasquarello, Alfredo and Car, Roberto, Phys. Rev. Lett. 79, 1766 (1997).Google Scholar
15. Queeney, K. T., Weldon, M. K., Chang, J. P., Chabal, Y. J., Gurevich, A. B., Sapjeta, J. and Opila, R. L., J. Appl. Phys. 87, 1322 (2000).Google Scholar
16. Wang, Q., Zhao, W., Lozano, J., Sun, Y.-M., Willson, C. G. and White, J. M., Appl. Surf. Sci. 183, 182 (2001).Google Scholar
17. Paparazzo, E., Vacuum 62, 47 (2001).Google Scholar
18. Wagner, C. D., Naumkin, A. V., Kraut-Vass, A., Allison, J. W., Powell, C. J., and Rumble, J. R. Jr., NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 3.2 (Web Version) (2002) [http://srdata.nist.gov/xps/].Google Scholar
19. Green, M.L., Gusev, E.P., Degraeve, R. and Garfunkel, E.L., J. Appl. Phys, 90, 2057 (2001).Google Scholar