Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T10:41:25.889Z Has data issue: false hasContentIssue false

Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes

Published online by Cambridge University Press:  31 January 2011

Sebastian Mackowski
Affiliation:
[email protected], Nicolaus Copernicus University, Institute of Physics, Torun, Poland
Dawid Piatkowski
Affiliation:
[email protected], Nicolaus Copernicus University, Institute of Physics, Torun, Poland
Stephan Wörmke
Affiliation:
[email protected], Ludwig-Maximilian-University, Department of Chemistry and Biochemistry and Center for Nanoscience, Munich, Germany
Achim Hartschuh
Affiliation:
[email protected], Ludwig-Maximilian-University, Department of Chemistry and Biochemistry and Center for Nanoscience, Munich, Germany
Christoph Bräeuchle
Affiliation:
Tatas H. P. Brotosudarmo
Affiliation:
[email protected], Ludwig-Maximilian-University, Department of Biology, Munich, Germany
Hugo Scheer
Affiliation:
[email protected], Ludwig-Maximilian-University, Department of Biology, Munich, Germany
Ashish Agarwal
Affiliation:
[email protected], University of Michigan, Department of Chemical Engineering, Ann Arbor, Michigan, United States
Nicholas A. Kotov
Affiliation:
[email protected], United States
Alexander O Govorov
Affiliation:
[email protected], Ohio University, Department of Physics and Astronomy, Athens, Ohio, United States
Get access

Abstract

We show that the fluorescence of peridinin-chlorophyll a-protein complexes can be strongly enhanced via coupling with plasmon excitations localized in metal nanostructures. The results of ensemble and single-molecule spectroscopy experiments at room temperature demonstrate six-fold increase of the emission intensity of the light-harvesting complex when it is placed in the vicinity of chemically prepared silver islands. Irrespective of the enhancement, we observe no effect of the metal nanoparticle on the fluorescence emission energy of the complex. This observation implies that plasmon excitations may be applied for controlling the optical properties of complex biomolecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Taminiau, T. H., Stefani, F. D., Segerink, F. B., Hulst, N. F. van, Nature Photon. 2, 234 (2008).Google Scholar
2 Lee, J., Hernandez, P., Lee, J., Govorov, A.O., Kotov, N.A., Nature Mater. 6, 291 (2007).Google Scholar
3 Lakowicz, J.R., J. R. Plasmonics 1, 5 (2006).Google Scholar
4 Ray, K., Badugu, R., Lakowicz, J.R., J. Am. Chem. Soc. 128, 8998 (2006).Google Scholar
5 Govorov, A.O., Bryant, G.W., Zhang, W., Skeini, T., Lee, J., Kotov, N.A., Slocik, J.M., Naik, R.R., Nano Lett. 6, 984 (2006).Google Scholar
6 Anger, P., Bharadwaj, P., Novotny, L., Phys. Rev. Lett. 96, 113002 (2006).Google Scholar
7 Lakowicz, J.R., Shen, Y., S. D'Auria, Malicka, J., Fang, J., Gryczynski, Z., Gryczynski, I., Anal. Biochem. 301, 261 (2002).Google Scholar
8 Hartschuh, A., Qian, H., Meixner, A. J., Anderson, N., Novotny, L., Nano Lett. 5, 2310 (2005).Google Scholar
9 Chowdhury, M.H., Ray, K., Aslan, K., Lakowicz, J.R., Geddes, C.D., J. Phys. Chem. C 111, 18856 (2007).Google Scholar
10 Mackowski, S., Wörmke, S., Maier, A., Brotosudarmo, T.H.P., Harutyunyan, H., Hartschuh, A., Govorov, A.O., Scheer, H., Bräuchle, C., Nano Lett. 8, 558 (2008).Google Scholar
11 Hofmann, E., Wrench, P.M., Sharples, F.P., Hiller, R.G., Welte, W., Diederichs, K., Science 272, 1788 (1996).Google Scholar
12 Kleima, F.J., Hofmann, E., Gobets, B., Stokkum, I.H van, Grondelle, R. van, Diederichs, K., Amerongen, H. van, H. Biophys. J. 78, 344 (2000).Google Scholar
13 Wörmke, S., Mackowski, S., Jung, C., Ehrl, M., Zumbusch, A., Brotosudarmo, T.H.P., Scheer, H., Hofmann, E., Hiller, R.G., Bräuchle, C., Biochim. Biophys. Acta - Bioenergetics 1767, 956 (2007).Google Scholar
14 Zigmantas, D., Hiller, R.G., Sundstrom, V., Polivka, T., Proc. Natl. Acad. Sci. USA 99, 16760 (2002).Google Scholar
15 Brotosudarmo, T.H.P., Hofmann, E., Hiller, R.G., Wörmke, S., Mackowski, S., Zumbusch, A., Bräuchle, C., Scheer, H., FEBS Letters 580, 5257 (2006).Google Scholar
16 Mackowski, S., Wörmke, S., Brotosudarmo, T.H.P., Jung, C., Hiller, R.G., Scheer, H., Bräuchle, C., Biophys. J. 93, 3249 (2007).Google Scholar
17 Wörmke, S., Mackowski, S., Schaller, A., Brotosudarmo, T.H.P., Johanning, S., Scheer, H., Bräuchle, C., J. Fluor. 18, 611 (2008).Google Scholar
18 Sun, Y.G., Xia, Y.N., Adv. Mat. 14, 833 (2002).Google Scholar
19 Link, S., El-Sayed, M., J. Phys. Chem. B 103, 8410 (1999).Google Scholar
20 Dulkeith, E., Morteani, A. C., Niedereichholz, T., Klar, T. A., Feldmann, J., Levi, S. A., Veggel, F. C. J. M. van, Reinhoudt, D. N., Möller, M., Gittins, D. I., Phys. Rev. Lett. 89, 203002 (2002).Google Scholar