Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:45:47.089Z Has data issue: false hasContentIssue false

Metal slanted columnar thin film THz optical sensors

Published online by Cambridge University Press:  18 April 2012

T. Hofmann
Affiliation:
University of Nebraska-Lincoln, Lincoln, NE, USA.
D. Schmidt
Affiliation:
University of Nebraska-Lincoln, Lincoln, NE, USA.
A. Boosalis
Affiliation:
University of Nebraska-Lincoln, Lincoln, NE, USA.
P. Kühne
Affiliation:
University of Nebraska-Lincoln, Lincoln, NE, USA.
C.M. Herzinger
Affiliation:
J.A. Woollam Co., Lincoln, NE, USA.
J.A. Woollam
Affiliation:
J.A. Woollam Co., Lincoln, NE, USA.
E. Schubert
Affiliation:
University of Nebraska-Lincoln, Lincoln, NE, USA.
M. Schubert
Affiliation:
University of Nebraska-Lincoln, Lincoln, NE, USA.
Get access

Abstract

We demonstrate that the anisotropic optical response of metal (cobalt) slanted columnar thin films (STF) at THz frequencies strongly depends on the dielectric properties of the dielectric ambient surrounding the slanted columnar thin films. An effective medium dielectric function approach is used to describe the combined optical response of metal slanted columnar thin film and dielectric ambient. Our observations indicate that metal (cobalt) slanted columnar thin films can be used as sensors which will enable detection and characterization of minute amounts of dielectrics at THz frequencies, such as for flow-based detection of liquid chemical constituents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hodgkinson, I.J. and Wu, Q.H., Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1998).Google Scholar
2. Hawkeye, M. M. and Brett, M. J., J. Vac. Sci. Technol. A 25, 1317 (2007).Google Scholar
3. Schmidt, D., Kjerstad, A. C., Hofmann, T., Skomski, R., Schubert, E., and Schubert, M., J. Appl. Phys. 105, 113508 (2009).Google Scholar
4. Schmidt, D., Booso, B., Hofmann, T., Schubert, E., Sarangan, A., and Schubert, M., Appl. Phys. Lett. 94, 011914 (2009).Google Scholar
5. Schmidt, D., Booso, B., Hofmann, T., Schubert, E., Sarangan, A., and Schubert, M., Opt. Lett. 34, 992 (2009).Google Scholar
6. Hofmann, T., Schmidt, D., Boosalis, A., Kühne, P., Skomski, R., Herzinger, C. M., Woollam, J. A., Schubert, M., and Schubert, E., Appl. Phys. Lett. 99, 081903 (2011).Google Scholar
7. Hofmann, T., Herzinger, C., Boosalis, A., Tiwald, T., Woollam, J., and Schubert, M., Rev. Sci. Instrum. 81, 023101 (2010).Google Scholar
8. Hofmann, T., Boosalis, A., Kühne, P., Herzinger, C. M., Woollam, J. A., Gaskill, D. K., Tedesco, J. L., and Schubert, M., Appl. Phys. Lett. 98, 041906 (2011).Google Scholar
9. Hofmann, T., Herzinger, C. M., Tedesco, J. L., Gaskill, D. K., Woollam, J. A., and Schubert, M., Thin Solid Films 519, 2593 (2011).Google Scholar
10. Schöche, S., Shi, J., Boosalis, A., Kühne, P., Herzinger, C. M., Woollam, J. A., Schaff, W. J., Eastman, L. F., Schubert, M., and Hofmann, T., Appl. Phys. Lett. 98, 092103 (2011).Google Scholar
11. Sihvola, A., Electromagnetic mixing formulas and applications (The Institution of Electrical Engineers, London, 1999).Google Scholar
12. Kindt, J. T. and Schmuttenmaer, C. A., J. Phys. Chem. 100, 10373 (1996).Google Scholar
13. Jellison, G. E., Thin Solid Films 313-314, 33 (1998).Google Scholar
14. Fujiwara, H., Spectroscopic Ellipsometry (John Wiley & Sons, New York, 2007).Google Scholar
15. van Exter, M. and Grischkowsky, D., Appl. Phys. Lett. 56, 1694 (1990).Google Scholar