Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T18:52:48.946Z Has data issue: false hasContentIssue false

Mesotaxy: Formation of Buried Single-Crystal CoSi2 Layers by Implantation

Published online by Cambridge University Press:  28 February 2011

Alice E. White
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
K. T. Short
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. C. Dynes
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. P. Garno
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. M. Gibson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Using high dose implantation of 200 keV Co ions followed by high temperature annealing, we have created buried layers of CoSi2 in crystalline Si of both (100) and (111) orientations. For a dose of 3 × 1017 Co/cm2, the layer that forms is ∼1100Å thick and the overlying Si is ∼600Å thick. A lower dose of 2 × 1017 Co/cm2 yields a thinner layer, 700Å thick, under 1200Å of crystalline Si. Rutherford Backscattering and channeling analysis of the layers shows that they are aligned with the substrate (χmin of the Co as low as 6.4%.) and TEM inspection of the (100) CoSi2/Si interfaces shows that they are abrupt and epitaxial (with occasional small facets). Moreover, electrical characterization of these layers yields resistance ratios that are better than epitaxial CoSi2 films grown by more conventional UHV methods.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tung, R. T., Gibson, J. M., and Poate, J. M., Phys. Rev. Lett., 50, 429 (1983) and references therein.Google Scholar
[2] White, Alice E., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M., Appl. Phys. Lett., 50, 12 Jan. 1987.Google Scholar
[3] White, Alice E., Short, K. T., Batstone, J. L., Jacobson, D. C., Poate, J. M., and West, K. W., Apph. Phys. Lett., 50, 5 Jan. 1987.Google Scholar
[4] RBS simulation done with RUMP, a computer program supplied by L. Doolittle, Cornell University, Ithaca, NY.Google Scholar
[5] Hensel, J. C., private communication.Google Scholar
[6] Newcombe, G., Lonzarich, G. G., Hebard, A. F., and Levi, A. F. J., private communication.Google Scholar
[7] Hensel, J. C., Tung, R. T., Poate, J. M., and Unterwald, F. C., Appl. Phys. Lett., 44, 913 (1984).Google Scholar
[8] Sanchez, F. H., Namavar, F., Budnick, J. I., Fasihudin, A., and Hayden, H. C., Mat. Res. Soc. Symp. Proc., 51, 439 (1986).Google Scholar
[9] Campisi, G. J., Dietrich, H. B., Delfino, M., and Sadana, D. K., Mat. Res. Soc. Symp. Proc., 54, 747 (1986).Google Scholar
[10] Canali, C., Campisano, S. U., Lau, S. S., Liau, Z. L., and Mayer, J. W., J. Appl. Phys., 46, 2831 (1975).Google Scholar
[11] Tung, R. T., private communication.Google Scholar