Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:31:49.679Z Has data issue: false hasContentIssue false

Mesostructured Zirconium Oxide

Published online by Cambridge University Press:  10 February 2011

P. Liu
Affiliation:
Department of Chemical Engineering and CERPIC, Université Laval, Ste-Foy, Qc, Canada G1K 7P4
J. S. Reddy
Affiliation:
Department of Chemical Engineering and CERPIC, Université Laval, Ste-Foy, Qc, Canada G1K 7P4
A. Adnot
Affiliation:
Department of Chemical Engineering and CERPIC, Université Laval, Ste-Foy, Qc, Canada G1K 7P4
A. Sayari
Affiliation:
Department of Chemical Engineering and CERPIC, Université Laval, Ste-Foy, Qc, Canada G1K 7P4
Get access

Abstract

The supramolecular templating technique was used to synthesize both hexagonal (Hx- ZrO2) and lamellar (L-ZrO2) phases of zirconium oxide. Under the conditions used in this work, the use of long chain primary amines and quaternary ammonium surfactants resulted in the exclusive formation of lamellar and hexagonal phases, respectively. The use of long chain cetyldimethylamine afforded a mixture of a hexagonal and a lamellar phases. Effects of synthesis parameters such as the ZrO2/surfactant ratio, ZrO2/water ratio, the nature of surfactant, the crystallization temperature and time on the formation of mesostructured ZrO2 were also studied. Addition of 1,3,5-trimethylbenzene (TMB) as a swelling agent led, in the presence of cetyltrimethylammonium bromide, to the formation of a lamellar phase rather than to pore enlargement. These materials were characterized by XRD, FTIR, XPS and EDX techniques. Regardless of their structure, the as-synthesized materials collapsed upon calcination. Treatment with monobasic potassium phosphate followed by calcination at 350 °C led to the formation of a stable porous Zr–P oxide with a surface area as high as 540 m2/g.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Nature, 359 (1992) 710.Google Scholar
2. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowitz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T.-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B. and Schlenker, J. L., J. Am. Chem. Soc., 114 (1992) 10834.Google Scholar
3. Anderson, M. T., Matin, J. E., Odinek, J., Newcomer, P., in Access in Nanoporous Materials, edited by Pinnavaia, T. J. and Thorpe, M. F. (Plenum Press, New York, 1995), p. 29.Google Scholar
4. Khushalani, D., Kuperman, A., Ozin, G. A., Tanaka, K., Garces, J., Olken, M. M. and Coombs, N., Adv. Mater., 7 (1995) 842.Google Scholar
5. Sayari, A., Chem. Mater., 8 (1996), in press.Google Scholar
6. Sayari, A., in Recent Progress and New Horizons in Zeolite Science and Technology, edited by Chon, H. et al., (Elsevier, Amsterdam, 1996), Chapter 1, in press.Google Scholar
7. Olson, D. H., Stucky, G. D. and Vartuli, J. C., Patent, U. S. No. 5, 364, 797.Google Scholar
8. Wu, C. and Bein, T., Science, 266 (1994) 1013.Google Scholar
9. Ciesla, U., Demuth, D., Leon, R., Petroff, P., Stucky, G. D., Unger, K. and Schüth, F., J. Chem. Soc., Chem. Commun., (1994) 1387.Google Scholar
10. Reddy, J. S. and Sayari, A., Catal. Lett., (1996) in press.Google Scholar
11. Knowles, J. A. and Hudson, M. J., J. Chem. Soc., Chem. Comm., (1995) 2283.Google Scholar
12. Luca, V., MacLachlan, D. J., Hook, J. M. and Withers, R., Chem. Mater., 7 (1995) 2220.Google Scholar
13. Abe, T., Taguchi, A., and Iwamoto, M., Chem. Mater., 7 (1995) 1429.Google Scholar
14. Antonelli, D. A. and Ying, J. Y., Angew. Chem. Int. Ed. Engl. 34 (1995) 2014.Google Scholar
15. Song, X. and Sayari, A., CHEMTECH, August 1995, p. 27.Google Scholar
16. Song, X. and Sayari, A., Catal. Rev. - Sci. Eng., 1996, in press.Google Scholar
17. Costa, M. C. C., Johnstone, R. A. W., Whittaker, D., J. Mol. Catal. A: Chemical, 103 (1995) 155.Google Scholar
18. Clearfield, A., Ind. Eng. Chem. Res., 34 (1995) 2865.Google Scholar
19. Abe, Y., Li, G., Nogami, M., Kasuga, T., Hench, L., J. Electrochem. Soc., 143 (1996) 144 Google Scholar
20. Davis, M. E., Chen, C. Y., Burkett, S. L. and Lobo, R. F., Mat. Res. Soc. Symp. Proc., 346 (1994) 831.Google Scholar
21. Huo, Q., Leon, R., Petroff, P. M. and Stucky, G. D., Science, 268 (1995) 1324.Google Scholar
22. Whitehurst, D. D., U. S. Patent No. 5,143,879 (1992).Google Scholar
23. Huo, Q., Margolese, D. I., Ciesla, U., Demuth, D. G., Feng, P., Gier, T. E., Sieger, P., Firouzi, A., Chmelka, B. F., Schüth, F. and Stucky, G. D., Chem. Mater., 6 (1994) 1176.Google Scholar
24. Attard, G. S., Glyde, J. C. and Goltner, C. G., Nature, 378 (1995) 366.Google Scholar
25. Thompson, R. C., Inorg. Chem., 24 (1985) 3542.Google Scholar
26. Fyfe, C. A. and Fu, G., J. Am. Chem. Soc., 117 (1995) 9709.Google Scholar
27. Israelachvili, J. N., Mitchell, D. J. and Ninham, B. W., J. Chem. Soc., Faraday Trans II, 72 (1976) 1527.Google Scholar