Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T15:49:05.756Z Has data issue: false hasContentIssue false

Mesoscopic Transport in Broken Down Ultrathin SiO2 Films

Published online by Cambridge University Press:  10 February 2011

E. Miranda
Affiliation:
Departament d'Enginyenra Electrònica., Universitat Autònoma de Barcelona, 08193-Bellaterra (SPAIN). E-mail: [email protected]
J. Suñe
Affiliation:
Departament d'Enginyenra Electrònica., Universitat Autònoma de Barcelona, 08193-Bellaterra (SPAIN). E-mail: [email protected]
R. Rodriguez
Affiliation:
Departament d'Enginyenra Electrònica., Universitat Autònoma de Barcelona, 08193-Bellaterra (SPAIN). E-mail: [email protected]
M. Nafria
Affiliation:
Departament d'Enginyenra Electrònica., Universitat Autònoma de Barcelona, 08193-Bellaterra (SPAIN). E-mail: [email protected]
X. Aymerich
Affiliation:
Departament d'Enginyenra Electrònica., Universitat Autònoma de Barcelona, 08193-Bellaterra (SPAIN). E-mail: [email protected]
Get access

Abstract

A common theoretical framework is presented to model the conduction characteristics of the two main dielectric breakdown modes in ultrathin SiO2 gate oxides, namely the soft and hard breakdown modes. The breakdown paths are considered to behave as mesoscopic quantum point contacts so that the conduction properties are controlled by energy funneling effects. An adiabatic approach to the modelling of these quantum point contacts is adopted to obtain an analytical approximation for the total transmission coefficient. In the limit of small breakdown spot areas, tunneling through a potential barrier associated with the lower electron transversal state at the narrowest part of the constriction explains the soft breakdown characteristics. For larger areas, such a barrier dissapears and conductance quantization is predicted. Experimental results are well explained by the model, including the conductance values after the hard breakdown and the oxide thickness independence of the current-voltage characteristic after the soft breakdown.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Stathis, J.H. and DiMaria, D.J., IEDM Techn. Digest, 1998, p. 167170.Google Scholar
2.Surñé, J., Placencia, I., Barniol, N., Farrés, E., Martín, F. and Aymerich, X., Thin Solid Films 185, 347 (1990).Google Scholar
3.Degraeve, R., Groseneken, G., Bellens, R., Ogier, J.L., Depas, M., Roussel, P.J. and Maes, H.E., IEEE Trans. Electron Devices 45, 904 (1998).Google Scholar
4.Stathis, J.H., Microelectronic Engineering 36, 325 (1997).Google Scholar
5.Datta, S., in Electronic Transport in Mesoscopic Systems, Cambridge, University Press, 1997.Google Scholar
6.Ouchterlony, T. and Berggren, K., Phys. Rev. B 52, 16329 (1995).Google Scholar
7.Büttiker, M., Phys. Rev. B 41, 7906 (1990).Google Scholar
8.Bogachek, E., Schervakov, A. and Landman, U., Phys. Rev. B 56, 1065 (1997).Google Scholar
9.Surñé, J., Miranda, E., Nafría, M. and Aymerich, X., Proc. IEDM' 98., p. 191 (1998).Google Scholar
10.Halimaoui, O., Brierè, O. and Ghibaudo, G., Microelec. Engineer. 36, 157 (1997).Google Scholar
11.Houssa, M., Nigam, T., Mertens, P. and Heyns, M., J. Appl. Phys. 84, 4351 (1998).Google Scholar