Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T01:09:53.675Z Has data issue: false hasContentIssue false

Melt Spinning Preparation of Bismuth Telluride and Partially Alloying with IV-VI Compounds for Thermoelectric Application

Published online by Cambridge University Press:  01 February 2011

Harald Boettner
Affiliation:
[email protected], Fraunhofer IPM, Thermoelectric SAystems, Heidenhofstr.8, Freiburg, DE-79110, Germany, #49-761-8857121
Dirk Ebling
Affiliation:
[email protected], Fraunhofer IPM, Thermoelectric Systems, Heidenhofstr.8, Freiburg, DE-79110, Germany
Alexandre Jacquot
Affiliation:
[email protected], Fraunhofer IPM, Thermoelectric Systems, Heidenhofstr.8, Freiburg, DE-79110, Germany
Uta Kühn
Affiliation:
[email protected], IFW Dresden, Helmholzstr.20, Dresden, DE-01069, Germany
Jürgen Schmidt
Affiliation:
[email protected], Fraunhofer IFAM Dresden, Dresden, DE-01277, Germany
Harald Boettner
Affiliation:
[email protected], Fraunhofer IPM, Thermoelectric Systems, Heidenhofstr.8, Freiburg, DE-79110, Germany
Get access

Abstract

The melt spinning technique (MST) combined with post annealing processes is evaluated for the development of thermoelectric nanocomposites. The evaluated ones are based on two components almost immiscible in solid state but with crystallographic correlation. One is taken from the V-VI-components system and the other one from the IV-VI-components system. This concept was applied to p-(Bi0,2Sb0,8)2Te3 and to p-[(Bi0,2Sb0,8)2Te3]1-xPbTex composites. MST samples of all types were characterised for some structural and thermoelectric properties. All V-VI materials are clearly textured after MST and show no deterioration concerning the thermoelectric properties even after subsequent annealing processes. Structural analysis of p-[(Bi0,2Sb0,8)2Te3]1-xPbTex composites gave significant hints for oriented precipitates of a IV-VI-rich phase incorporated into the V-VI-rich matrix. The thermoelectric figure of merit of the evaluated composites could be enhanced by suitable annealing procedures of both the quenched bulk materials and the melt spin material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nolas, G. S., Poon, J., Kanatzidis, M., MRS Bulletin, Vol. 31 March 2006, pp 199205 Google Scholar
2. Venkatasubramanian, R., Siivola, E., Colpitts, T. and O'Quinn, B., Nature 413 597602 (2001)Google Scholar
3. Johnson, Google Scholar
4. Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K. and Kanatzidis, M. G., Science 303, 818 (2004).Google Scholar
5. Liu, J. and Li, J.F., Key Engineering Materials 280–283, 397 (2005).Google Scholar
6. Chen, H. Y., Zhao, X. B., Lu, Y. F., Mueller, E. and Mrotzek, A., J. Appl. Phys. 94, 6621 (2003).Google Scholar
7. Koukharenko, E., Fréty, N., Shepelevich, V. G. and Tedenac, J. C., Journal of Alloys and Compounds 327, 14 (2001)Google Scholar
8. Glazov, V.M. and Yatmanov, Y. V., Izv. Akad. Nauk SSSR, Neorg. Mater. 22, 3640 (1986)Google Scholar
9. Kukharenka, E., Fréty, N., Shepelevich, V. G. and Tédenac, J. C., Journal of Materials Science: Materialials in Electronics 14, 383388 (2003)Google Scholar
10. Tang, X., Xie, W., Li, H., Zhao, W., Zhang, Q. and Niino, M., Applied Physics Letters 90, 012102 (2007)Google Scholar
11. Nurnus, J., Böttner, H., Beyer, H., Lambrecht, A., IEEE Proceedings 18st International Conference on Thermoelectrics, Baltimore (USA) pp. 704708 Google Scholar
12. Nurnus, J., Beyer, H., Lambrecht, A. Böttner, H., Mat.Res.Soc.Symp, Vol626, Z2.1.1 Google Scholar
13. Böttner, H., Nurnus, J., DE 10 2005 027 680 A1Google Scholar
14. Synder, G. J., Ikeda, T., Haile, S. M., Ravi, V. A., US 2007/02420750 A1Google Scholar
15. Böttner, H., Chen, G., Venkatasubramanian, R., MRS Bulletin, Vol. 31 March 2006, pp 211217 Google Scholar
16. Elagina, E. I. and Abrikosov, N. K., Russian Journal of Inorganic Chemistry 4, (1959)Google Scholar
17. Hirai, T., Takeda, Y. and Kurata, K., Journal of the Less Common Materials 13, 352356 (1967)Google Scholar
18. Golovanova, N. S., Zlomanov, V. P. and Tananaeva, O. I., Neorganicheskie Materialy 19, 740743 (1982)Google Scholar
19. Shelimova, L. E., Karpinskii, O. G., Konstantinov, P. P., Avilov, E. S., Kretova, M. A. and Zemskov, V. S., Inorganic Materials 40, 451460 (2004)Google Scholar
20. Kusano, D. and Hori, Y., IEEE Proceedings 21st International Conference on Thermoelectrics, Long Beach (USA) pp. 1316 (2002)Google Scholar
21. Zhu, P-W., Imai, Y., Isoda, Y., Shinohara, Y., Jia, X-P. and Zou, G-T., Chinese Physics Letters 22, 21032104 (2005)Google Scholar
22. Zhu, P., Y Imai, Isoda, Y., Shinohara, Y., Jia, X. and Zou, G., Materials Transactions 46, 761764 (2005)Google Scholar
23. Ebling, D., Jacquot, A., Jägle, M., Böttner, H., Kün, U. and Kirste, L., phys.stat.sol. (RRL) 1, 238240 (2007)Google Scholar