Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T20:18:34.487Z Has data issue: false hasContentIssue false

Medium-Range Order in High Al-content Amorphous Alloys Measured by Fluctuation Electron Microscopy

Published online by Cambridge University Press:  01 February 2011

W. G. Stratton
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Avenue, Madison, WI 53706, U.S.A.
J. Hamann
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Avenue, Madison, WI 53706, U.S.A.
J. H. Perepezko
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Avenue, Madison, WI 53706, U.S.A.
P. M. Voyles
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Avenue, Madison, WI 53706, U.S.A.
Get access

Abstract

We have used fluctuation electron microscopy (FEM) to measure nanoscale mediumrange order in amorphous Al92Sm8. Samples of this amorphous alloy formed by rapid quenching (melt-spinning) show a high density of pure Al nanocrystals (>1020 m-3) after low temperature (< 250 °C) devitrification. In samples amorphized by deformation (cold-rolling), primary Al-crystallization does not occur. This difference in devitrification behavior suggests an underlying structural difference in the amorphous state. FEM is a quantitative microscopy technique for determining nanoscale medium-range order in amorphous materials. Our measurements show that amorphous alloys formed by melt-spinning and cold-rolling have significant structural differences, and that annealing melt-spun alloy under conditions previously shown to modify the devitrification thermodynamics also changes the medium-range structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inoue, A., Ohtera, K., Tsai, A. P., and Masumoto, T., Jpn. J. Appl. Phys. 27, L479 (1988).Google Scholar
2. He, Y., Poon, S. J., and Shiflet, G. J., Science 241, 1640 (1988).Google Scholar
3. Blank-Bewersdorff, M., J. Mat. Sci. Lett. 10, 1225 (1991).Google Scholar
4. Foley, J. C., Allen, D. R., and Perepezko, J. H., Scripta Mat. 35, 655 (1996).Google Scholar
5. Wilde, G., Sieber, H., and Perepezko, J. H., Scripta Mat. 40, 779 (1999).Google Scholar
6. Inoue, A., Prog. Mat. Sci. 43, 365 (1998).Google Scholar
7. Inoue, A., Mater. Trans. JIM 36, 909 (1992).Google Scholar
8. Sieber, H., Wilde, G., Sagel, A., and Perepezko, J. H., J. Non-Cryst. Sol. A301, 250 (1999).Google Scholar
9. Nakazato, K., Kawamura, Y., Tsai, A. P., and Inoue, A., Appl. Phys. Lett. 63, 2644 (1993).Google Scholar
10. Gangopadhyay, A. K., Croat, T. K., and Kelton, K. F., Acta Mater. 48, 4035 (2000).Google Scholar
11. Kelton, K. F., Croat, T. K., Gangopadhyay, A. K., Xing, L.-Q., Greer, A. L., Weyland, M., Li, X., and Rajan, K., J. Non-Cryst. Sol. 317, 71 (2003).Google Scholar
12. Perepezko, J. H., Tong, W. S., Hamann, J., Hebert, R. J., Rösner, H. R., and Wilde, G., in Supercooled Liquids, Glass Transition, and Bulk Metallic Glasses, edited by Egami, T., Greer, A. L., Inoue, A. and Ranganathan, S., (Materials Research Society 754, Boston, 2002) p. CC10.3.1.Google Scholar
13. Treacy, M. M. J. and Gibson, J. M., Acta Cryst. A 52, 212 (1996).Google Scholar
14. Voyles, P. M., Gibson, J. M., and Treacy, M. M. J., J. Electron Microsc. 49, 259 (2000).Google Scholar
15. Gibson, J. M., Treacy, M. M. J., and Voyles, P. M., Ultramicroscopy 83, 169 (2000).Google Scholar
16. Gibson, J. M. and Treacy, M. M. J., Phys. Rev. Lett. 78, 1074 (1997).Google Scholar
17. Voyles, P. M., Gerbi, J. E., Treacy, M. M. J., Gibson, J. M., and Abelson, J. R., Phys. Rev. Lett. 86, 5514 (2001).Google Scholar
18. Voyles, P. M. and Abelson, J. R., Solar Energy Materials and Solar Cells 78, 85 (2003).Google Scholar
19. Voyles, P. M., Gerbi, J. E., Treacy, M. M. J., Gibson, J. M., and Abelson, J. R., J. Non-Cryst. Sol. 293–295, 45 (2001).Google Scholar
20. Treacy, M. M. J., Gibson, J. M., and Keblinski, P. J., J. Non-Cryst. Sol. 231, 99 (1998).Google Scholar
21. Hufnagel, T. C., Fan, C., Ott, R. T., Li, J., and Brennan, S., Intermetallics 10, 1163 (2002).Google Scholar
22. Li, J., Gu, X., and Hufnagel, T. C., Microsc. Microanal. 9, 509 (2003)Google Scholar
23. Voyles, P. M., Treacy, M. M. J., Gibson, J. M., Jin, H.-C., and Abelson, J. R., in Advances in Materials Problem Solving with the Electron Microscope, edited by Petrov, I., (Materials Research Society 589, 1999) p. 155.Google Scholar
24. Cockayne, D. J. H. and McKenzie, D. R., Acta Cryst. A44, 870 (1988).Google Scholar