Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:32:31.061Z Has data issue: false hasContentIssue false

A Mechanistic Study of CC12F2/02 RIE for Bipolar Trench Isolation

Published online by Cambridge University Press:  28 February 2011

David A. Danner
Affiliation:
IBM T.J.Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598
Edward J. Petrillo
Affiliation:
IBM T.J.Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598
Michael R. Polcari
Affiliation:
IBM T.J.Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598
Get access

Abstract

The etching of 1.25×3.5 micron trenches in silicon for use in bipolar device isolation using chemistries based on CC12F2 (freon-12) and 02 has been investigated.It was found that competitive reactions in the trench favor deposition of a Si02-like material on the sidewalls and promote lateral etching of the N+ subcollector under conditions necessary for high selectivity.In addition thermally activated processes were investigated by direct measurement of the sample surface temperature during etching.The temperature threshold for the initiation of subcollector undercut was determined to be 70C and the vertical etch rate exhibited an inverse activation indicating adsorption-limited etching.Results are discussed in the context of a qualitative model, based on the etchant-unsaturate model, which describes the contribution of several phenomena to the trench shape.These include sidewall passivation, species transport, deposition, N+ doping enhancement, Si loading, and ion scattering.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. a) Bondur, J.A. and Pogge, H.B., U.S.Patent No.4 139 422 (1979).b) H.B.Pogge, J.A.Bondur, P.J.Burkhardt, J.Electrochem.Soc.130, 1592 (1983).Google Scholar
2. a) Goto, H., Takada, T., Abe, R., Kawabe, Y., Oami, K., Tanaka, M., IEDM Tech.Digest, p.58 (1982).b) A.Hayasaka, Y.Tamaki, M.Kawamura, K.Ogiue, S.Ohwaki, IEDM Tech.Digest, p.62 (1982).Google Scholar
3. Rung, R., IEDM Tech.Digest, p.574 (1984).Google Scholar
4. Sunami, H., IEDM Tech.Digest, p.694 (1985).Google Scholar
5. Egerton, E.J., Nef, A., Millikin, W., Cook, W., Baril, D., Solid State Tech. 24 (8), 84 (1982).Google Scholar
6. Chin, D., Dhong, S.H., Long, G., J.Electrochem.Soc. 132, 1705 (1985).Google Scholar
7. a) R.F.Lever and K.H.Raacke, U.S.Patent Applic.No.267 483 (26 May 1981).b) Horwitz, C.M., IEEE Trans.Elect.Dev. ED–28, 1320 (1981).Google Scholar
8. Mogab, C.J., Adams, A.C., Flamm, D.L., J.Appl.Phys. 49, 3796 (1978).Google Scholar
9. Sato, M. and Nakamura, H., J.Electrochem.Soc. 129, 2522 (1982).Google Scholar
10. Schwatrz, G.C. and Schaible, P.M., J.Vac.Sci.Tech. 16, 410 (1979).Google Scholar
11. Schwatrz, G.C. and Schaible, P.M., J.Electrochem.Soc. 130, 1898 (1983).Google Scholar
12. Flamm, D.L. and Donnelly, V.M., Plasma Chem.& Plasma Proc. 1, 37 (1981).Google Scholar
13. Flamm, D.L., Donnelly, V.M., Mucha, J.A., J.Appl.Phys. 52, 3633 (1981).Google Scholar
14. Chapman, B.N., Glow Discharge Processes (Wiley-Interscience, New York, 1980) pp.330337.Google Scholar