Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T08:51:16.108Z Has data issue: false hasContentIssue false

Mechanisms of Strain Reduction in GaN and AlGaN/GaN Epitaxial Layers

Published online by Cambridge University Press:  10 February 2011

O. GfrÖrer
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, GermanyE-mail: [email protected]
T. Schlüsener
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, GermanyE-mail: [email protected]
V. Härle
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, GermanyE-mail: [email protected]
F. Scholz
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, GermanyE-mail: [email protected]
A. Hangleiter
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, GermanyE-mail: [email protected]
Get access

Abstract

We have investigated Al0.12Ga0.88N layers with and without a 1 µm GaN buffer, grown on the c-face of α – Al2O3 substrate with an intermediate AlN nucleation layer grown by LP-MOVPE. We used spatially resolved cathodoluminescence spectroscopy at a temperature of 8K to investigate the strain and the homogeneity of composition that can be determined from the energy of the luminescence peak. The larger thermal expansion coefficient of the sapphire in comparison to the nitrides leads to a biaxial compressive strain of the upper GaN layer when cooling down from growth temperature. For AlGaN layers directly grown on the nucleation layer this cannot be confirmed. The layer stays relaxed and fluctuations in the aluminium composition of 0.4% can be observed. When growing an intermediate GaN buffer, the AlGaN layer gets tensilely strained. This strain is of elastic nature and microcracks can be observed preferentially at the edges due to the smaller lattice constant of AlGaN in comparison to GaN. Even detaching of the AlGaN layers grown on the buffer can be observed. In the regions without cracks the layers are quite homogeneous. A deformation potential of (19±4)eV was estimated for Al0.12Ga0.88N.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sasaki, T. and Zembutsu, S., J. of Appl. Phys. 61, 2533 (1987).Google Scholar
2. Amano, H., Hiramatsu, K., and Akasaki, I., Jap. J. of Appl. Phys. 27, 1384 (1988).Google Scholar
3. Leszczynski, M., Suski, T., Teisseyre, H., Perlin, P., Grzegory, I., Jun, J., , Porowsky, S., and Moustakas, T. D., J. of Appl. Phys. 76, 4909 (1994).Google Scholar
4. Scholz, F., Härle, V., Boley, H., Stoiber, F., Kaufmann, B., Reyher, G., Dörnen, A., Gfrörer, O., Im, S.-J., and Hangleiter, A., in Proceedings of the Topical Workshop on Nitrides 95, Nagoya, Japan (1995). Solid State Electronics (1996), in press.Google Scholar
5. Yoshida, S., Misawa, S., and Gonda, S., J. of Appl. Phys. 53, 6844 (1982).Google Scholar
6. Numerical Data and Functional Relationships in Science and Technology, New Series, edited by Landolt, and Bornstein, (Springer-Verlag Berlin, New York 1982), Vol. 17.Google Scholar
7. Gfrörer, O., Schlüsener, T., Härle, V., Scholz, F., and Hangleiter, A., in Symposium C: UV, Blue and Green Light Emission from Semiconductor Materials, EMRS Spring Meeting, Strassbourg, France, June 1996. Mat. Sci. Eng. B (1996), in press.Google Scholar
8. Gavini, A. and Cardona, M., Phys. Rev. B 1, 672 (1970).Google Scholar