Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T03:05:11.849Z Has data issue: false hasContentIssue false

Mechanisms of Raman Scattering in doped Indium Nitride

Published online by Cambridge University Press:  01 February 2011

Claire Pinquier
Affiliation:
Laboratoire de Physique des Solides, UMR 5477 CNRS, IRSAMC, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse Cedex 04, France
François Demangeot
Affiliation:
Laboratoire de Physique des Solides, UMR 5477 CNRS, IRSAMC, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse Cedex 04, France
Jean Frandon
Affiliation:
Laboratoire de Physique des Solides, UMR 5477 CNRS, IRSAMC, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse Cedex 04, France
Miguel Gaio
Affiliation:
Laboratoire de Physique des Solides, UMR 5477 CNRS, IRSAMC, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse Cedex 04, France
Olivier Briot
Affiliation:
Groupe d'Etudes des Semi-conducteurs, UMR 5650 CNRS, Place Eugène Bataillon, Université Montpellier II, 34095 Montpellier Cedex 9, France
Bénédicte Maleyre
Affiliation:
Groupe d'Etudes des Semi-conducteurs, UMR 5650 CNRS, Place Eugène Bataillon, Université Montpellier II, 34095 Montpellier Cedex 9, France
Sandra Clur-Ruffenach
Affiliation:
Groupe d'Etudes des Semi-conducteurs, UMR 5650 CNRS, Place Eugène Bataillon, Université Montpellier II, 34095 Montpellier Cedex 9, France
Bernard Gil
Affiliation:
Groupe d'Etudes des Semi-conducteurs, UMR 5650 CNRS, Place Eugène Bataillon, Université Montpellier II, 34095 Montpellier Cedex 9, France
Get access

Abstract

Highly n-doped InN layers are investigated by means of Raman scattering: a strong mode is evidenced near the frequency of the A1(LO) phonon, despite the high conductivity of the films. This observation is interpreted assuming the breakdown of the wave-vector conservation leading to the decoupling of the plasmon from the phonon. The lineshape of the longitudinal optical mode is simulated using the Lindhard-Mermin dielectric function for various light scattering processes: we found that the charge density fluctuation mechanism is dominant, at least in the visible excitation range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bhuiyan, A. G., Hashienoto, A. and Yamamoto, A., J. Appl. Phys. 94, 2779 (2003).Google Scholar
2. Varga, B. B., Phys. Rev. A 137, 2896 (1965).Google Scholar
3. Harima, H., Sakashita, H. and Nakashima, S., Mater. Sci. Forum 264–8, 1363 (1998).Google Scholar
4. Ramsteiner, M., Brandt, O. and Ploog, K. H., Phys. Rev. B 58, 1118 (1998).Google Scholar
5. Abstreiter, G., Cardona, M. and Pinczuk, A., Light scattering in Solids IV, edited by Cardona, M. and Güntherodt, G., Springer-Verlag, Berlin (1984), p. 5 and REFERENCES therein.Google Scholar
6. Briot, O., Maleyre, B. and Ruffenach, S., Appl. Phys. Lett. 83, 2912 (2003).Google Scholar
7. Ashcroft, N. W. and Mermin, N. D., Solid State Physics, edited by Hold-Saunders International, New York (1976).Google Scholar
8. Martin, R. M. and Falicov, L. M., Light scattering in Solids I, edited by Cardona, M., SpringerVerlag, Berlin (1975), p. 80 and REFERENCES therein.Google Scholar
9. Pinczuk, A. and Burstein, E., Light scattering in Solids I, edited by Cardona, M., SpringerVerlag, Berlin (1975), p. 23 and REFERENCES therein.Google Scholar
10. Hon, D. T. and Faust, W. L., Appl. Phys. 1, 241 (1973).Google Scholar
11. Klein, M. V., Ganguly, B. N. and Colwell, P. J., Phys. Rev. B 6, 2380 (1972).Google Scholar
12. Mermin, N. D., Phys. Rev. B 1, 2362 (1970).Google Scholar
13. Pines, D., Elementary Excitations in Solids, Benjamin, New York (1963).Google Scholar