No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Radiation damage effects in ceramics, e.g., nuclear waste forms, transmutation targets, and inert matrix fuels, may have important implications for the physical and chemical stability of these materials as the cumulative radiation dose increases over time. A key aspect of scientific research in this area is the ability to understand the fundamental damage mechanisms through the combination of experimental and atomistic modelling techniques. In this paper, we review some of the lessons learned from the significant body of data now available for pyrochlore-defect fluorite based materials, followed by an illustration of the advantages of working on simple compounds with well established interatomic potentials. We conclude the paper with a description of radiation damage processes in the LaxSr1-1.5xTiO3 defect perovskites, a system that includes phase transformations, short-range order effects, and complex defect behavior.