Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T18:23:36.306Z Has data issue: false hasContentIssue false

Mechanisms of Optical Gain in Cubic GaN and Ingan

Published online by Cambridge University Press:  10 February 2011

J. Holst
Affiliation:
Technische Universitdit Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
A. Hoffmann
Affiliation:
Technische Universitdit Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
I. Broser
Affiliation:
Technische Universitdit Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
T. Frey
Affiliation:
Universitàt Paderborn, FB-6 Physik, D-33095 Paderborn, Germany
B. Schöttker
Affiliation:
Universitàt Paderborn, FB-6 Physik, D-33095 Paderborn, Germany
D.J. As
Affiliation:
Universitàt Paderborn, FB-6 Physik, D-33095 Paderborn, Germany
D. Schikora
Affiliation:
Universitàt Paderborn, FB-6 Physik, D-33095 Paderborn, Germany
K. Lischka
Affiliation:
Universitàt Paderborn, FB-6 Physik, D-33095 Paderborn, Germany
Get access

Abstract

The epitaxial growth of zinc-blende (cubic) GaN and InGaN on GaAs with a common cleavage plane and readily high-quality, low-cost wafers may be considered as an alternative approach for the future realization of cleaved laser cavities. To obtain detailed information about the potential of cubic GaN and InGaN for device applications we performed optical gain spectroscopy accompanied by time-integrated and time-dependent photoluminescence measurements at 2 K and 300 K. From intensity-dependent gain measurements, the identification of the gain processes was possible. For moderate excitation levels, the biexciton decay is likely to be responsible for a gain structure at 3.265 eV in cubic GaN [10]. For the highest pump intensities, the electron- hole-plasma is the dominant gain process, providing gain values up to 200 cm-1. Furthermore cubic GaN samples with different cavity lengths from 250 to 600 mim were cleaved to investigate the influence of the sample geometry on the gain mechanisms. In these samples increased gain values up to 150 cm-1 as well as lower threshold excitation densities were observed, indicating the potential of cubic GaN for device applications. The results of GaN will be compared with intensity-dependent gain measurements on InGaN samples, grown on GaAs with varying In-content. The observed gain mechanisms in cubic InGaN will be discussed in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1.] As, D.J., Schikora, D., Greiner, A., Lübbers, M., Mimkes, J., and Lischka, K., Phys. Rev. B 54, R11118 (1996)Google Scholar
[2.] Klann, R., Brandt, O., Yang, H., Grahn, H.T., and Ploog, K.H., Appl. Phys. Lett. 70, 1076 (1997)Google Scholar
[3.] Hoist, J., Eckey, L., Hoffmann, A., Broser, I., Schöttker, B., As, D.J., Schikora, D., Lischka, K., Appl. Phys. Lett. 72, 1439 (1998)Google Scholar
[4.] Nakadaira, A. and Kanaka, H., Appl. Phys. Lett. 71, 812 (1997) R. Klann, O. Brandt, H. Yang, H.T. Grahn, and K.H. Ploog, Appl. Phys. Lett. 70, 1076 (1997)Google Scholar
[5.] Wu, J., Yaguchi, H., Onabe, K., Shiraki, Y., Appl. Phys. Lett. 73, 1931 (1998)Google Scholar
[6.] As, D.J., Schmilgus, F., Wang, C., Schdttker, B., Schikora, D., and Lischka, K., Appl. Phys. Lett. 70, 1311 (1997)Google Scholar
[7.] Schoettker, B., Kuehler, J., As, D.J., Schikora, D. and Lischka, K., Material Science Forum Vols. 264–268 (1998), pp. 11731176 Google Scholar
[8.] Shaklee, K. L., Nahory, R. E., Leheny, R. F., J. Lumin. 7, 284 (1973)Google Scholar
[9.] Pankove, J. I., Optical Processes in Semiconductors, (Dover, New York, 1971)Google Scholar
[10.] Shmagin, I.K., Muth, J.F., Kolbas, R.M., Krishnankutty, S., Keller, S., Mishra, U.K., Baars, S.P. Den, Appl. Phys. Lett. 81, 2021 (1997)Google Scholar
[11.] Im, J.S., Kollmer, H., Off, J., Sohmer, A., Scholz, F., Phys. Rev. B 57, 9435 (1998)Google Scholar