Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T03:27:07.705Z Has data issue: false hasContentIssue false

Mechanisms of Doping-Enhanced Superlattice Disordering and of Gallium Self-Diffusion in GaAs

Published online by Cambridge University Press:  26 February 2011

T. Y. Tan
Affiliation:
also at Microelectronics Center of North Carolina, Research Triangle Park, NC 27709
U. Gösele
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27706
B. P. R. Marioton
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27706
Get access

Abstract

Recently available Ga-Al interdiffusion results in GaAs/AlAs superlattices allow to conclude that Ga self-diffusion in GaAs is carried by triply-negatively charged Ga vacancies under intrinsic and n-doping conditions. The mechanism of the Si enhanced superlattice disordering is the Fermi-level effect which increases the concentrations of the charged point defect species. For the effect of the p-dopants Be and Zn, the Fermi-level effect has to be considered together with dopant diffusion induced Ga self-interstitial supersaturation or undersaturation. Self-diffusion of Ga in GaAs under heavy p-doping conditions is governed by positively charged Ga self-interstitials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Laidig, W.D., Holonyak, N. Jr, Camras, M.D., Hess, K., Coleman, J.J., Dapkus, P.D., and Bardeen, J., App. Phys. Lett. 38, 776 (1981).Google Scholar
2.Laidig, W.D., Lee, J.W., Chiang, P.K., Simpson, L.W., and Bedir, S.M., J. Appl. Phys. 54, 6382 (1983).Google Scholar
3.Camras, M.D., Holonyak, N. Jr, Hess, K., Ludowise, M.J., Dietze, W.T., and Lews, C.R., App. Phys. Lett. 42, 185 (1983).Google Scholar
4.Coleman, J.J., Dapkus, P.D., Kirkpatrick, C.G., Camras, M.D., and Holonyak, N., Appl. Phys. Lett. 40, 904 (1982).Google Scholar
5.Rao, E.V.K., Thibierge, H., Brillouet, R., Alexandre, R., and Azoulay, R., Appl. Phys. Lett. 46, 1 (1985).Google Scholar
6.Nakamura, T., Komiya, S., Inata, T., Muto, S., Hiyamizu, S., and Umebu, I., in Layered Structures and Epitaxy, eds. Gibbson, J.M., Osbourn, G.C. and Tromp, R.M. (Proc. vol.56, Mat. Res. Soc., Pittsburgh, PA, 1986) p. 339.Google Scholar
7.Rao, E.V.K., Ossart, P., Alexandre, F., and Thibiege, H., Appl. Phys. Lett. 50, 588(1987).Google Scholar
8.Kawabe, M., Shimizu, N., Hasegawa, F., and Nannichi, Y., Appl. Phys. Lett. 46, 849 (1985).Google Scholar
9.Tan, T.Y. and Gösele, U.,J. Appl. Phys. 61, 1841 (1987).Google Scholar
10.Kobayashi, J., Nakajima, M., Fukunaga, T., Takamori, T., Ishida, K., Nakashima, H., and Ishida, K., Jpn. J. Appl. Phys. 25, L736 (1986).Google Scholar
11.Rao, E.V.K., Duhamel, N., Favennec, P.N., and L'Haridon, H., J. Appl. Phys. 49, 3898 (1978).Google Scholar
12.Goldstein, B., Phys. Rev. 121, 1305 (1961).Google Scholar
13.Palfrey, H.D., Brown, M., and Willoughby, A.F.W., J. Electrochem. Soc. 128, 2224 (1981).Google Scholar
14.Petroff, P.M., J. Vac. Sci. Technol. 14, 973 (1977).Google Scholar
15.Fleming, R.M., McWhan, D.B., Gossard, A.C., Wiegmann, W., and Logan, R.A., J. Appl. Phys. 51, 357 (1980).Google Scholar
16.Cibert, J., Petroff, P.M., Werder, D.J., Pearton, S.J., Gossard, A.C., and English, J.H., Appl. Phys. Lett. 49, 223 (1986).Google Scholar
17.Schlesinger, T.E. and Kuech, T., Appl. Phys. Lett. 49, 519 (1986).Google Scholar
18.Mei, P., Yoon, H.W., Venkatesan, T., Schwarz, S.A., and Harbison, J.P., Appl. Phys. Lett. 50, 1823 (1987).Google Scholar
19.Deppe, D.G., Holonyak, N. Jr, Hsieh, K.C., Gavrilovic, P., Stutius, W., and Williiams, J., Appl. Phys. Lett. 51, 581 (1987).Google Scholar
20.Myers, D.R., Biefeld, R.M., Fritz, I.J., Picraux, S.T., and Zipperian, T.E., Appl. Phys. Lett. 44,1052 (1984).Google Scholar
21.Hirayama, Y., Susuki, Y., and Okamoto, H., Jpn. J. Appl. Phys. 24, 1498 (1985).Google Scholar
22.Ralston, J., Wicks, G.W., Eastman, L.F., DeCooman, B.C., and Carter, C.B., J. Appl. Phys. 59, 120 (1986).Google Scholar
23.Lee, J.W. and Laidig, W.D., J. Electron. Mat. 13, 147 (1984).Google Scholar
24.Longini, R.L., Solid-State Electron. 5, 127 (1962).Google Scholar
25.Gösele, U. and Morehead, F., J. Appl. Phys. 52, 4617 (1981).Google Scholar
26.Ball, R.K., Hutchinson, P.W., and Dobson, P.S., Phil. Mag. A43, 1299 (1981).Google Scholar
27.Duhamel, N., Henoc, P., Alexandre, F., and Rao, E.V.K., Appl. Phys. Lett. 39,49 (1981).Google Scholar
28.Enquist, P., Wicks, G.W., Eastman, L.F., and Hitzman, C., J. Appl. Phys. 58, 4130 (1985).Google Scholar
29.Kendall, L., in Semiconductors and Semimetals, 4 (Academic Press, NY, 1968) p. 163.Google Scholar
30.Stolwijk, N.A., Perret, M. and Mehrer, H., Diffusion and Defect Data, in press (1988).Google Scholar