Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T08:55:49.805Z Has data issue: false hasContentIssue false

Mechanisms governing the release of radionuclides from spent nuclear fuel in geological repository: major outcomes of the European Project SFS

Published online by Cambridge University Press:  21 March 2011

Christophe Poinssot
Affiliation:
CEA Nuclear Energy Division, Department of Physics and Chemistry, DPC/SECR, F-91191 Gif Sur Yvette cedex, France, Contact author: email. : [email protected]
Cécile Ferry
Affiliation:
CEA Nuclear Energy Division, Department of Physics and Chemistry, DPC/SECR, F-91191 Gif Sur Yvette cedex, France
Bernd Grambow
Affiliation:
SUBATECH Laboratory, School of Mines, 41 rue A. Kastler, La Chantrerie, BP20722, F-44307 Nantes, France
Manfred Kelm
Affiliation:
INE, Forschung Zentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany
Kastriot Spahiu
Affiliation:
SKB, Brahegatan 47, box 5864, S 102 40 Stockholm, Sweden
Aurora Martinez
Affiliation:
ENRESA, Emilio Vargas 7, E-28043 Madrid, Spain
Lawrence Johnson
Affiliation:
NAGRA, Hardstrasse 73, CH-5430 Wettingen, Switzerland
Esther Cera
Affiliation:
ENVIROS SPAIN, Passeig de Rubi, 29-31 Valldoreix, E-08197 Barcelona, Spain
Joan de Pablo
Affiliation:
UPC, Barcelona, Spain
Javier Quinones
Affiliation:
CIEMAT, MONCLOA center, Avda. Complutense, 22, E - 28040 Madrid, Spain
Detlef Wegen
Affiliation:
European Commission, JRC, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
Karel Lemmens
Affiliation:
SCK-CEN, Boeretang 200, B-2400 Mol, Belgium
Thomas Mcmenamin
Affiliation:
European Commission, Bruxelles, Belgium
Get access

Abstract

European Commission supported a wide research project entitled “Spent Fuel Stability under repository conditions” (SFS) within the 5th FWP, the aim of which was to develop a common understanding of the radionuclides release from spent nuclear fuel in geological disposal and build a RN release model in order to assess the fuel performance. This project achieved by the end of 2004 focuses both on the Instant Release Fraction (IRF) model and the Matrix Alteration Model (MAM).

A new IRF model was developed based on the anticipated performances of the various fuel microstructures (gap, rim, grains boundaries) and the potential diffusion of RN before the canister breaching. However, this model lets the choice to the end-user about the degree of conservativeness to consider.

In addition, fuel alteration has been demonstrated to be linked to the production of radiolytic oxidants by water radiolysis at the fuel interface, the oxidation of the fuel interface by radiolytic oxidants and the subsequent release of uranium under the influence of aqueous ligands. A large set of experimental data was therefore acquired in order (i) to upgrade the current radiolytic kinetic scheme, (ii) to experimentally correlate the fuel alteration rate and the fuel specific alpha activity by performing experiments on alpha doped samples, (iii) to experimentally test the potential inhibitor effect of hydrogen on fuel dissolution. Based on these results, a new MAM was developed, which was also calibrated using the experiments on inactive UO2 samples. This model was finally applied to representative granitic, salt and clayey environment to predict spent fuel long-term fuel performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Poinssot, C., JM. Cavedon, Cowper, M., Grambow, B., McMenamin, T. (2004), proceedings of the conference EURADWASTE 2004, http://www.cordis.lu/fp6-euratom/ev_euradwaste04_proceedings.htm.Google Scholar
[2] Johnson, L.H., Garisto, N.C. and Stroes-Gascoyne, S. (1985), Proc. Waste Management 1985, 479.Google Scholar
[3] Johnson, L.H. & McGinnes, D.F., Nagra technical report NTB 02-07, (2002).Google Scholar
[4] Bailey, M.G., Jonhson, L.H., Shoesmith, D.W. (1985), Corr. Science, 25, 233238.Google Scholar
[5] Spent fuel disposal Performance Assessment final report (SPA projects), EU report, EUR 1935, (2000).Google Scholar
[6] Poinssot, C., Lovera, P., Ferry, C., Gras, JM. (2003), Mat. Res. Soc. Symp. Proc Vol 757, Scientific Basis for Nuclear Waste Management XXVI, 3542.Google Scholar
[7] Ferry, C., Piron, JP., Poinssot, C. (2005), Mat. Res. Soc. Symp. Proc, Scientific Basis for Nuclear Waste Management XXIX, in press (this issue).Google Scholar
[8] Ferry, C., Garcia, JP., Poinssot, C. (2005), J. Nucl. Mat., 346, 4855.Google Scholar
[9] Johnson, L., Ferry, C., Poinssot, C. (2005), J. Nucl. Mat., 346, 5665.Google Scholar
[10] Gray, W.J. (1999), In Scientific Basis for Nuclear Waste Management XXII, (Wronkewiecz, D. J. and Lee, J.H., Editors), Mat. Res. Soc. Symp. Proc. Vol. 556 (1999) 487494 Google Scholar
[11] Koo, Y.-H., Lee, B.-H., Cheon, J.-S., Sohn, D.-S., J. Nucl. Materials 295 (2001) 213230.Google Scholar
[12] Poinssot, C., Ferry, C., Lovera, P., Jégou, C., Gras, JM. (2005), J. Nucl. Mat., 346, 6677.Google Scholar
[13] Corbel, C., Sattonay, G., Lucchini, J.F., Ardois, C., Barthe, M.F., Huet, F., Dehaudt, P., Hickel, B., Jegou, C., Nucl. Instr. Meth. In Phys. Res. B, 179, 225229, (2001).Google Scholar
[14] Corbel, C., Sattonnay, G., Guilbert, S., Garrido, F., Barthe, M.F., Jegou, C. (2006). J. Nucl. Mater., 348, 117.Google Scholar
[15] Christensen, H., Sunder, S. and Shoesmith, D.W (1994)., J. All. Comp., 213/214, 93.Google Scholar
[16] Kelm, M., Bohnert, E. (2004), Mat. Res. Soc. Symp. Proc Vol 757, Scientific Basis for Nuclear Waste Management Google Scholar
17 ] Cachoir, C., Carbol, P., Cobos-Sabate, J., Glatz, J.P., Grambow, B., Lemmens, K., Martinez-Esparza, A., Mennecart, T., Ronchi, C., Rondinella, V., Serrano-Purroy, D., Spahiu, K., Wegen, D., Wiss, T. (2005), JRC-ITU-SCA-2005/01 technical report.Google Scholar
[18] Spahiu, K., Werme, L., Eklund, U.B. (2000), The influence of near field hydrogen on actinide solubilities and spent fuel leaching, Radiochim Acta, 88 pp. 507511.Google Scholar
[19] Carbol, P., Cobos-Sabate, J., Glatz, J.P., Rondinella, V., Wegen, D., Wiss, T., Loida, A., Metz, V., Kienzler, B., Spahiu, K., Grambow, B., Quinones, J., Martinez-Esparza, A. (2005), SKB technical report TR-05-09.Google Scholar
[20] Andriambololona, Z., Bruno, J., Caceres, J., Cachoir, C., Carbol, P., Casas, I., Cavedon, J.M., Cera, E., Clarens, F., Cobos, J., Pablo, J. De, Gago, J.A., Gimenez, J., Glatz, J.P., Huebra, A. Gonzales de la, Grambow, B., Iglesias, E., Jégou, C., Kelm, M., Kienzler, B., Lemmens, K., Loida, A., Martinez-Esparza, A., Merino, J., Metz, V., Miserque, F., Poinssot, C., Poulesquen, A., Quinones, J., Rondinella, V., Rovira, M., Serrano, D., Spahiu, K., Wegen, D., Wiss, T. (2004), ENRESA internal technical report.Google Scholar
[21] Quiñones, J., Iglesias, E., Martínez-Esparza, A., Merino, J., Cera, E., Bruno, J., de Pablo, J., Casas, I., Giménez, J., Clarens, F., Rovira, M., (2005), Mat. Res. Soc. Symp. Proc, Scientific Basis for Nuclear Waste Management XXIX, in press (this issue).Google Scholar
[22] Gimenez, J., Clarens, F., Casas, I., Rovira, M., Pablo, J. De, Bruno, J. (2001), Migration 2001 conference.Google Scholar
[23] de Pablo, J., Casas, I., Giménez, J., Clarens, F., Duro, L., and Bruno, J. (2004), Mat. Res. Soc. Symp. Proc, Scientific Basis for Nuclear Waste Management XXVII, Vol. 807 (ed. Oversby, V. M. and Werme, L. O.), pp. 8388.Google Scholar
[24] Ekeroth, E. and Jonsson, M. (2003) Oxidation of UO2 by radiolytic oxidants. J. Nucl. Mater. 322, 242248.Google Scholar
[25] de Pablo, J., Casas, I., Giménez, J., Molera, M., Rovira, M., Duro, L. and Bruno, J., (1999). The oxidative dissolution mechanism of uranium dioxide. I. The effect of temperature in hydrogen carbonate medium. Geochim. et Cosmochim. Acta, 63 (19/20), 30973103.Google Scholar
[26] Johnson, L., Poinssot, C., Ferry, C., Lovera, P., Poulesquen, A., Miserque, F., Corbel, C., Cavedon, JM., Andriambololona, Z., Wegen, D., Carbol, P., Glatz, JP., Cobos-Sabate, J., Serrano, D., Rondinella, V., Wiss, T., Grambow, B., Spahiu, K., Kelm, M., Metz, V., Loida, A., Kienzler, B., Lundstrom, T., Christensen, H., Jonsson, M., Pablo, J. de, Rovira, M., Clarens, F., Casas, I., Martinez-Esparza, A., Gago, J., Bruno, J., Cera, E., Merino, J., Huebra, A. Gonzales de la, Iglesias, E., Quinones, J., Cachoir, C., Lemmens, K., Mayer, G., Jégou, C., Synthesis of the results from the EU spent fuel stability SFS project, NAGRA technical report 04-09.Google Scholar
[27] Poinssot, C., Ferry, C., Kelm, M., Grambow, B., Martinez, A., Johnson, L., Andriambololona, Z., Bruno, J., Cachoir, C., Cavedon, J.M., Christensen, H., Corbel, C., Jegou, C., Lemmens, K., Loida, A., Lovera, P., Miserque, F., Pablo, J. De, Poulesquen, A., Quinones, J., Spahiu, K., Wegen, D., (2005), “Final report of European Project Spent Fuel Stability under repository conditions”, CEA report R-6093, 104 p.Google Scholar