Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T20:26:08.074Z Has data issue: false hasContentIssue false

Mechanism of Twin Formation During the Tetragonal to Orthorhombic Transformation In Yba2Cu3O7-X

Published online by Cambridge University Press:  28 February 2011

Mehmet Sarikaya
Affiliation:
Department of Materials Science and Engineering; and Advanced Materials Technology Center, Washington Technology Centers, University of Washington, Seattle, Washington, USA 98195
Ilhan A. Aksay
Affiliation:
Department of Materials Science and Engineering; and Advanced Materials Technology Center, Washington Technology Centers, University of Washington, Seattle, Washington, USA 98195
Ryoichl Kikuchi
Affiliation:
Department of Materials Science and Engineering; and Advanced Materials Technology Center, Washington Technology Centers, University of Washington, Seattle, Washington, USA 98195
Get access

Abstract

The formation of twins in the YBa2Cu3O7‐x system has been studied theoretically on the basis of transmission electron microscopy observations. The shape of the lips of the twinned domains is determined from two elastic strains, one associated with the twin boundary and the other with the lattice distortion at the lip region. The tangent of the angle at the tip which was calculated from the model agrees with experimental observations sufficiently well. The growth mechanism of the twinned domains is analyzed with an energy minimization approach. The similarities of transformation characteristics in this system to those of other systems are briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jorgensen, J. D., Veal, B. W., Kwok, W. K., Crabtree, G. W., Umezawa, A., Nowicki, L. J., and Paulikas, A. P., Phys. Rev. B, 36, 5731 (1987).Google Scholar
2 Ilirabayashi, M., lhara, H., Terada, N., Senzaki, K., Hiyashi, K., Waki, S., Murata, K., Tokumoto, M., and Kimura, Y., Jpn. J. Appl. Phys., 26 (4) L454 (1987).Google Scholar
3 Horn, P. M., Keanc, D. T., Held, G. A., Jordan‐Sweet, J.‐L., Kaiser, D. L., and Holtzberg, F., Phys. Rev. Lett., 59 (24) 2772 (1987).Google Scholar
4 Schuller, I. K., Hinks, D. G., Beno, M. A., Capone, D. W. II, Soderholm, L., Lacquet, J.‐P., Bruynseraede, Y., Segre, C. U., and Zhang, K., Solid. State Commutt., 63, 385 (1987).Google Scholar
5 Van Tendeloo, G., Zandbergen, H. W., and Amelinckx, S., Solid State Commun., 63, 603 (1987).Google Scholar
6 Pande, C. S., Singh, A. K., Toth, L., Guloser, D. U., and Wolf, S., Phys. Rev. B, 36 (10) 5669 (1987).Google Scholar
7 Tafte, J., Suenaga, M., and Sabatini, R. L., Appl. Phys. Lett., 52 (8) 667 (1987).Google Scholar
8 Mitchel, T. E., Roy, T., Schwartz, R. B., Smith, J. F., and Wohlleben, D., J. Electr. Micros. Tech., 8, 319 (1988); J. C. Barry, ibid, p. 325.Google Scholar
9 Sarikaya, M., Kikuchi, R., and Aksay, I. A., Physica C, 152, 161 (1988).Google Scholar
10 Shaw, T. M., Shinck, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C., J. Mater. Res., 4 (2) 248 (1989).Google Scholar
11 Sarikaya, M. and Stern, E. A., Phys. Rev. B, 37, 9373 (1988).Google Scholar
12 Dolan, G. J., Sandrasekhar, G. V., Dinger, T. R., Feild, C., and Holtzberg, F., Phys. Rev. Lett., 62 (7) 827 (1989).Google Scholar
13 Deutscher, G. and Miiller, K. A., Phys. Rev. Lett., 59 (15) 1745 (1987).Google Scholar
14 Dolan, G. J., Chandrashekhar, G. V., Dinger, T. R., Feild, C., and Holtzberg, F., Phys. Rev. Lett., 62 (7) 827 (1989).Google Scholar
15 Cava, R. J., Batlogg, B., Chen, C. H., Reitman, E. A., Zaharak, S. M., and Werder, D., Phys. Rev. B, 36 (10) 5719 (1987).Google Scholar
16 Ourmazd, A., Rentscher, J. A., Spence, J. C. H., O'Keefe, M., Graham, R. J., Johnson, D. W. Jr., and Rhodes, W. W., Nature, 327, 308 (1987).Google Scholar
17 Hervieu, M., Domenges, B., Michel, C., Heger, G., Provost, J., and Raveau, B., Phys. Rev. B, 36, 3920 (1987).Google Scholar
18 Horowitz, B., Barsch, G. R., and Krumhansl, J. A., Phys. Rev. B, 36 (16) 8895 (1987).Google Scholar
19 Jou, C. J. and Washburn, J., J. Mater. Res., 4 (4) 795 (1989).Google Scholar
20 Sarikaya, M., Aksay, I. A., and Kikuchi, R., Phys. Rev. B (submitted November 1989).Google Scholar
21 See, for instance, papers in Science and Technology of Zirconia, Advances in Ceramics, Vol. 3, edited by Ileuer, A. H. and Hobbs, I,. W., (American Ceramics Society, Columbus, Ohio, 1981).Google Scholar
22 Rice, R. W. and Pohanka, R. C., J. Am. Ceram. Soc., 62 (1) 559 (1979); H. M. Chan and M. Harmer, in Ceramic Microstructwes 86; Role of Interfaces, edited by Pask, J. A. and Evans, A. G. (Plenum, New York, 1987), p. 739Google Scholar
23 Cohen, M. and Wayman, C. M. in Metallurgical Treaties, edited by Tien, J. K. and Elliott, J. F. (The Metallurgical Society of AIME, Warrendale, Pennsylvania, 1981), p. 445.Google Scholar
24 Cahn, J. W., Acta Met., 9, 795 (1961).Google Scholar
25 Cotlrell, A., Dislocations and Plastic Flow in Crystals (Oxford University Press, London, 1953).Google Scholar