Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:17:09.480Z Has data issue: false hasContentIssue false

The Mechanism of Internal Stress Superplasticity

Published online by Cambridge University Press:  16 February 2011

B. Derby*
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK.
Get access

Abstract

The phenomenon of internal stress superplasticity is reviewed and the theoretical mechanical foundations of current mechanism models of the process examined. These models are shown to be based on two different principles: i.e. a biased internal plastic flow, or an enhanced creep generated by a superposition of internal and external stresses. Mechanical test data is shown to be more consistent with enhanced plasticity models in zinc and metal matrix composites for deformation during thermal cycling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Padmanabhan, K.A. and Davies, G.J., Superplasticity, (Springer Verlag, 1980)Google Scholar
2. Sherby, O.D., Caliguri, R.D., Kayali, E.S. and White, R.A., in Advances in Metal Processing. Eds. Burke, J.J., Mehrabian, R. and Weiss, V., (Plenum 1981), p. 133.Google Scholar
3. Konobe'evsky, S.T., Pravdyuk, N.F. and Kutaitsev, V.I., in Proc. 1st Inter. Conf. on the Peaceful use of Atomic Energy, Vol.7, (United Nations, Geneva 1956), p. 433.Google Scholar
4. Roberts, A.C. and Cottrell, A.H., Phil. Mag. 1, 711 (1956).Google Scholar
5. Roberts, A.C., Acta Metall. 8, 817 (1960).Google Scholar
6. Young, A.G., Gardiner, K.M. and Rotsey, W.B., J. Nucl. Mater. 2, 234 (1960).Google Scholar
7. Anderson, R.G. and Bishop, J.F.W., in Symp. on Uranium and Graphite, paper 3, (Inst. of Metals, London 1962) p. 17.Google Scholar
8. Lobb, R.C., Sykes, E.C. and Johnson, R.H., Metal Sci. J. 6 33 (1972).Google Scholar
9. Wu, M.Y., Wadsworth, J. and Sherby, O.D., Metall. Trans, 18A, 451(1987).Google Scholar
10. Boas, W. and Honeycombe, R.W.K., Proc. Roy. Soc. Lon. 186A, 57 (1946).Google Scholar
11. Boas, W. and Honeycombe, R.W.K., Proc. Soc. Lon. 188A, 427 (1947).Google Scholar
12. Johnson, R.H. and Honeycombe, R.W.K., J. Less Common Metals 4, 226 (1962).Google Scholar
13. Wu, M.Y. and Sherby, O.D., Scipta Metal. 18, 773 (1984).Google Scholar
14. Flour, J.C. Le and Locicero, R., Scripta Metall. 21, 1071 (1987).Google Scholar
15. Pickard, S.M. and Derby, B., Acta Metall. to be published.Google Scholar
16. Sauveur, A., Trans AIMME 70, 3 (1924).Google Scholar
17. Porter, L.F. and Rosenthal, P.C., Acta Metall. 7, 504 (1959).Google Scholar
18. Guy, A.G. and Parwick, J.E., Trans AIMME 221, 802 (1961).Google Scholar
19. Hong, S.H., Sherby, O.D., Divecha, S.P.D., Karmarkar, S.D. and MacDonald, B.A., J. Compos. Mater. 22, 102 (1988).Google Scholar
20. Greenwood, G.W. and Johnson, R.H., Proc. Roy. Lon. 283A 403 (1965).Google Scholar
21. Derby, B., Scripta Metall. 19, 703 (1985).Google Scholar
22. Pickard, S.M. and Derby, B., in Proc. 9th Risø Inter. Symp.: Mechanical and Physical Behaviour of Metallic and Ceramic Composites, Edited by Andersen, S.I., Lilholt, H. and Pedersen, O.B. (Riso National Lab., Rosskilde Denmark 1988).Google Scholar