Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T10:53:16.625Z Has data issue: false hasContentIssue false

Mechanical Properties of Soluble Polymer/Silica Gel Hybrids

Published online by Cambridge University Press:  10 February 2011

L. C. Klein
Affiliation:
Rutgers University, Ceramic & Materials Engineering, 607 Taylor Road, Piscataway, NJ 08854-8065, [email protected].
J. Van Wert
Affiliation:
Comell University, Geology Department, Ithaca, NY 14853
C. L. Beaudry
Affiliation:
Komatsu Silicon America, 1400 NE 48th St., Hillsboro, OR 97124
Get access

Abstract

Strengths have been measured for silica gels prepared with poly(ethylene oxide) (PEO) and poly(vinyl acetate) (PVAc). The modulus of rupture was determined using standard three-point bending in a mechanical tester. The samples were prepared by mixing tetraethylorthosilicate with the polymers dissolved in water (PEO) or water/ethanol(PVAc). Molecular weights between 200 and 3400 were used for PEO. Substitutions of the polymer for silica represented between 5 and 25% on a weight basis. In these systems, the interactions between the polymer and the silica network are largely through hydrogen bonding, between ether oxygens in PEO and silanols and between hydroxyls in PVAc and silanols. The extent of the bonding increases with increasing aging time, as indicated by an almost linear increase in the modulus of rupture. The increase for PEO was greater than for PVAc. Among PEO samples, the strengths were higher for higher molecular weights at the same weight fraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Klein, L. C., in Sol-Gel Optics, ed. L. C., Klein (Kluwer Academic Publishers, Boston, 1994) 215.10.1007/978-1-4615-2750-3_10Google Scholar
[2]. Schmidt, H., in Better Ceramics Through Chemistry IV, MRS Vol. 180, 961 (1990).Google Scholar
[3]. Schmidt, H. in Ultrastructure Processing of Advanced materials, Ed. D. R., Uhlmann and D. R., Ulrich, (John Wiley, NY, 1992) 409.Google Scholar
[4]. Schmidt, H., J. Sol-Gel Sci. Technol. 1 217 (1994).10.1007/BF00486165Google Scholar
[5]. Sanchez, C. and Ribot, F., New J. Chemistry 18 1007 (1994).Google Scholar
[6]. Avnir, D., Klein, L. C., Levy, D., Schubert, U., and Wojcik, A. B. in The Chemistry of Organosilicon Compounds Vol.2, eds. Rappoport, Z. and Apeloig, Y., Wiley, London, 1998, Chapter 40, pp. 23172362.Google Scholar
[7]. Klein, L. C., Beaudry, C., Wojcik, A. B. and Mandanas, M., in Ceramic Transactions 81: Sol-Gel Processing of Advanced Materials, ed. Klein, L. C., Pope, E. J. A., Sakka, S. and Woolfrey, J., American Ceramic Soc., Westerville, OH, 1998, pp. 273280.Google Scholar
[8]. Klein, L. C. and Beaudry, C. L., SPIE 3136 20 (1997).Google Scholar
[9]. Klein, L. C., Beaudry, C. L., Yamazaki, S. and Wojcik, A., in Sol-Gel and Polymer Photonic Devices, ed. M. P., Andrews and S.I., Najafi, SPIE CR68–03, 1997, pp. 5463.Google Scholar
[10]. Abramoff, B. and Klein, L. C. SPIE 1328 241 (1990).Google Scholar
[11]. Wojcik, A. B., and Klein, L. C., J. Sol-Gel Sci. Technol. 2 115 (1994).10.1007/BF00486223Google Scholar
[12]. Wojcik, A. B. and Klein, L. C., J. Sol-Gel Sci. Technol. 4 57 (1995).10.1007/BF00486703Google Scholar
[13]. Landry, C. J., Coltrain, B. K., Wesson, J. A., Zumbuladis, N. and Lippert, J. L., Polymer 33 1496 (1992).10.1016/0032-3861(92)90127-IGoogle Scholar
[14]. Wojcik, A. B. and Klein, L. C., SPIE 2018 160 (1993).Google Scholar
[15]. Beaudry, C. L., Klein, L. C. and McCauley, R. A., J. Thermal Analysis 46 55 (1996).10.1007/BF01979947Google Scholar
[16]. Wojcik, A. B. and Klein, L. C., J. Sol-Gel Sci. Technol. 5, 77 (1995).10.1007/BF00487723Google Scholar
[17]. Huang, H. H., Orler, B. and Wilkes, G. L., Polymer Bull. 14 557 (1985).10.1007/BF00271615Google Scholar
[18]. Beaudry, C. L. and Klein, L. C., in Nanotechnology: Molecularly Designed Materials, ed. Chow, G-M. and Gonsalves, K. E.(Am. Chem. Soc. Symp. 622, Washington, DC, 1996)Google Scholar
[19]. Chujo, Y. and Saegusa, T., in Advances in Polymer Science, Vol.100, (Springer Verlag-Berlin, 1992) 12.Google Scholar
[20]. Abramoff, B. and Klein, L. C. in Chemical Processing of Advanced Materials, Ed. Hench, L. L. and West, J. K. (Wiley, NY 1992) pp. 815821.Google Scholar
[21]. Wojcik, A. B., Ting, A. and Klein, L. C., Materials Science and Engineering: C. Biomimetic Materials, Sensors and Systems 6 115 (1998).10.1016/S0928-4931(98)00047-2Google Scholar
[22]. Kaji, H., Nakanishi, K. and Soga, N., J.Sol-Gel Sci. Technol. 1 35 (1993).10.1007/BF00486427Google Scholar
[23]. Nakanishi, K. and Soga, N., J.Non-Cryst. Solids 139 1 (1992).10.1016/S0022-3093(05)80800-2Google Scholar
[24]. Nakanishi, K. and Soga, N, J. Non-Cryst. Solids 142 36 (1992).10.1016/S0022-3093(05)80004-3Google Scholar
[25]. Kaji, H., Nakanishi, K., Soga, N., Inoue, T. and Nemoto, N., J. Sol-Gel Sci. Tech. 3 169 (1994).10.1007/BF00486556Google Scholar
[26]. Beaudry, C. L. and Klein, L. C., ANTEC/SPE 55 1910 (1997).Google Scholar
[27]. Abramoff, B. and Klein, L. C., J. Am. Ceram. Soc. 74 1469 (1991).10.1111/j.1151-2916.1991.tb04134.xGoogle Scholar
[28]. Wojcik, A. B. and Klein, L. C., SPIE 2611 172 (1995).Google Scholar