Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:04:02.352Z Has data issue: false hasContentIssue false

Mechanical Properties of Metal-Intermetallic Microlaminate Composites

Published online by Cambridge University Press:  10 February 2011

J. Heathcote
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106, [email protected]
G. R. Odette
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
G. E. Lucas
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
R. G. Rowe
Affiliation:
GE CRD, 1 River Road, K-I, MB265, Schenectady, NY 12301
Get access

Abstract

Tensile strengths, static and dynamic fracture toughness, and fatigue crack propagation were measured for different combinations of Nb metal-intermetallic microlaminate composites. Metal layer bridging produced toughening by factors of 2 to 5 under static conditions. Dynamic testing reduced the toughness significantly. Fatigue crack propagation rates were comparable to data for pure Nb. A key composite property, the stress -displacement function σ(u) of the constrained metal layers, was evaluated by several techniques and used in a bridging-crack stability analysis to predict tensile strengths in agreement with experimental values. The results provide guidelines for improving microlaminate performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fleisher, R. L., Mat. Res. Soc. Symp. Proc., 133, pp. 305310 (1989).Google Scholar
2. Odette, G. R., Chao, B. L., Sheckherd, J. W., Lucas., G. E., Acta Metall. Mater., 40, p. 2381 (1992).Google Scholar
3. Deve, H., Evans, A. G., Odette, G. R., Mehrabian, R., Emiliani, M. L., Hecht, R. J., Acta Metall. Mater., 38, pp. 14911502 (1990).Google Scholar
4. Cao, H. C., Dalgleish, B. J., Deve, H., Elliot, C. K., Evans, A. G., Mehrabian, R., Odette, G. R., Acta Matall., 37, 11, pp. 29692977 (1989).Google Scholar
5. Anton, D. L. and Shah, D. M., Mat. Res. Soc. Symp. Proc., 194, pp. 4552 (1990).Google Scholar
6. Heredia, F. E., He., M. Y., Lucas, G. E., Evans, A. G., Konitser, D., Acta Metall. Mater., 41, p. 505 (1993).Google Scholar
7. Rowe, R. G., Skelly, D. W., Larsen, M., Heathcote, J., Lucas, G. E., Odette, G. R., 93-CRD-229, General Electric, December 1993.Google Scholar
8. Rowe, R. G., Skelly, D. W., Larsen, M., Heathcote, J., Lucas, G. E., Odette, G. R., Mat.Res.Symp. Proc., 322, pp. 461472 (1994).Google Scholar
9. Heathcote, J., Odette, G. R., Lucas, G. E., Rowe, R. G., Skelly, D., Acta Met Metall (in press).Google Scholar
10. Ogawa, K., Zhang, X. J., Kobayashi, T., Armstrong, R. W., Irwin, G. R., ASTM-STP-833,American Society for Testing and Materials, Philadelphia, PA, p. 393 (1984).Google Scholar
11. Kobayashi, T., and Shockey, D.A, Met. Trans., 18A, p. 1941 (1987).Google Scholar
12. Edsinger, K., Odette, G. R., Lucas, G. E., Wirth, B., B., Effects of Radiation in Materials:17th International Symposium, Gelles, D., Nanstad, R., Kumar, A., Little, E., Editors, ASTMSTP-1270, (in press).Google Scholar
13. Murugesh, L., Rao, K. T. Venkateswara, Ritchie, R. O., Scripta Met. et Mater., 29, pp. 11071112 (1993).Google Scholar
14. Johnson, M., Master's Thesis, University of California, Santa Barbara (1992).Google Scholar
15. Bannister, M. and Ashby, M., Acta Metall. Mater., 39, 25752582 (1991).Google Scholar
16. Tada, H., The Stress Analysis of Cracks Handbook, 2nd Edition, St. Louis, MO (1985).Google Scholar