Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:45:32.716Z Has data issue: false hasContentIssue false

Mechanical Properties and Magnetism: Stainless Steel Alloys from First-principles Theory

Published online by Cambridge University Press:  27 September 2011

L. Vitos
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden Division for Materials Theory, Department of Physics and Materials Science, Uppsala University, S-75120 Uppsala, Sweden Research Institute for Solid State Physics and Optics, P.O.Box 49, H-1525 Budapest, Hungary
H. L. Zhang
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden
N. Al-Zoubi
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden
S. Lu
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden
J.-O. Nilsson
Affiliation:
AB Sandvik Materials Technology, SE-811 81 Sandviken, Sweden
S. Hertzman
Affiliation:
Outokumpu Stainless Research Foundation, Royal Institute of Technology, Stockholm SE-100 44, Sweden
B. Johansson
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden Division for Materials Theory, Department of Physics and Materials Science, Uppsala University, S-75120 Uppsala, Sweden
Get access

Abstract

Stainless steels are among the most important engineering materials, finding their principal scope in industry, specifically in cutlery, food production, storage, architecture, medical equipment, etc. Austenitic stainless steels form the largest sub-category of stainless steels having as the main building blocks the paramagnetic substitutional disordered Fe-Cr-Ni-based alloys. Because of that, austenitic steels represent the primary choice for non-magnetic engineering materials. The presence of the chemical and magnetic disorder hindered any previous attempt to calculate the fundamental electronic, structural and mechanical properties of austenitic stainless steels from first-principles theories. Our ability to reach an ab initio atomistic level approach in this exciting field has become possible by the Exact Muffin-Tin Orbitals (EMTO) method. This method, in combination with the coherent potential approximation, has proved an accurate tool in the description of the concentrated random alloys. Using the EMTO method, we presented an insight to the electronic and magnetic structure, and micromechanical properties of austenitic stainless steel alloys. In the present contribution, we will discuss the role of magnetism on the stacking fault energies and elastic properties of paramagnetic Fe-based alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wranglén, G., An Introduction to Corrosion and Protection of Metals (Chapman and Hall, New York, 1985).Google Scholar
2. Majumdar, A. K. and Blanckenhagen, P. v., Phys. Rev. B 29, 4079 (1984).Google Scholar
3. Lung, C. W. and March, N. H., Mechanical Properties of Metals (World Scientific Publishing Co. Pte. Ltd., 1999).Google Scholar
4. Fleischer, R. L., Acta Met. 11, 203 (1963); R. Labusch, Acta Met. 20, 917(1972); F. R. N. Nabarro, Philosophical magazine 35, 613 (1977).Google Scholar
5. Speich, G. R., Schwoeble, A. J. and Leslie, W. C., Metallurgical Transactions 3, 2031 (1972).Google Scholar
6. Ghosh, G. and Olson, G. B., Acta Materialia 50, 2655 (2002).Google Scholar
7. Vitos, L., Korzhavyi, P. A., Nilsson, J.-O. and Johansson, B., Physica Scripta 77, 065703 (2008) and references therein.Google Scholar
8. Ishida, K., Phys. Status Solidi (a) 36, 717 (1976).Google Scholar
9. Grimvall, G., Phys. Scr. 13, 59 (1976).Google Scholar
10. Vitos, L., Korzhavyi, P. A. and Johansson, B., Phys. Rev. Lett. 96,117210 (2006).Google Scholar
11. Vitos, L., Nilsson, J.-O. and Johansson, B., Acta Materialia 54, 3821 (2006).Google Scholar
12. Vitos, L., Korzhavyi, P. A. and Johansson, B., Nature Materials 2, 2528 (2003).Google Scholar
13. Vitos, L., Korzhavyi, P. A. and Johansson, B., Phys. Rev. Lett. 88, 155501(4) (2002).Google Scholar
14. Zhang, H. L., Johansson, B. and Vitos, L., Phys. Rev. B 79, 224201 (2009).Google Scholar
15. Zhang, H. L., et al. , Phys. Rev. B 81, 184105 (2010).Google Scholar
16. Zhang, H. L., et al. , J. Phys.: Condens. Matter 22, 275402 (2010).Google Scholar
17. Andersen, O. K., Jepsen, O. and Krier, G., in Lectures on Methods of Electronic Structure Calculations, edited by Kumar, V., Andersen, O. K., and Mookerjee, A., World Scientific Publishing Co., Singapore, pp. 63124 (1994).Google Scholar
18. Vitos, L., Phys. Rev. B 64, 014107 (2001).Google Scholar
19. Vitos, L., Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications. Springer-Verlag London, Series: Engineering Materials and Processes (2007).Google Scholar
20. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
21. Kollár, J., Vitos, L. and Skriver, H. L., in Electronic Structure and Physical Properties of Solids: the Uses of the LMTO Method, Lectures Notes in Physics, edited by Dreyssé, H. (Springer-Verlag, Berlin, 2000), p. 85.Google Scholar
22. Vitos, L., Abrikosov, I. A. and Johansson, B., Phys. Rev. Lett. 87, 156401(4) (2001).Google Scholar
23. Soven, P., Phys. Rev. 156, 809 (1967); B. L. Györffy, Phys. Rev. B 5, 2382(1972).Google Scholar
24. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
25. Györffy, B. L., Pindor, A. J., Stocks, G.M., Staunton, J., Winter, H., J. Phys. F 15, 1337 (1985).Google Scholar
26. Magyari-Köpe, B., Vitos, L. and Grimvall, G., Phys. Rev. B 70, 052102 (2004).Google Scholar
27. Taga, A., Vitos, L., Johansson, B. and Grimvall, G., Phys. Rev. B 71, 014201 (2005).Google Scholar
28. Ropo, M., Kokko, K., Vitos, L. and Kollár, J., Phys. Rev. B 71, 045411 (2005).Google Scholar
29. Delczeg-Czirjak, E. K., Delczeg, L., Ropo, M., Kokko, K., Punkkinen, M. P. J., Johansson, B. and Vitos, L., Phys. Rev. B 79, 085107 (2009).Google Scholar
30. Magyari-Köpe, B., Vitos, L., Johansson, B. and Kollár, J., Acta Crystallogr. B57, 491 (2001).Google Scholar
31. Magyari-Köpe, B., et al. , Phys. Rev. B 65, 193107 (2002).Google Scholar
32. Vitos, L. and Johansson, B., Phys. Rev. B. 79,024415 (2009).Google Scholar
33. Teklu, A., Ledbetter, H., Kim, S., Boatner, L. A., McGuire, M. and Keppens, V., Metall. Mater. Trans. A 35, 3149 (2004).Google Scholar