Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-20T07:22:44.114Z Has data issue: false hasContentIssue false

Mechanical Anisotropy in Sheets of γ-TiAl Alloys

Published online by Cambridge University Press:  15 February 2011

A. Bartels
Affiliation:
TU Hamburg-Harburg, Physics and Technology of Materials, D-21071 Hamburg, Germany
H. Clemens
Affiliation:
Plansee AG, Technology Center, A-6600 Reutte, Austria
C. Hartig
Affiliation:
TU Hamburg-Harburg, Physics and Technology of Materials, D-21071 Hamburg, Germany
H. Mecking
Affiliation:
TU Hamburg-Harburg, Physics and Technology of Materials, D-21071 Hamburg, Germany
Get access

Abstract

At room temperature sheets of γ-TiAl exhibit a higher yield stress in the rolling direction than in the transverse direction. Around 700°C the opposite behavior is observed. The texture mainly consists of a modified cube component. The tetragonal c-axis (001) is aligned in the sheet plane transversely to the rolling direction. Taken into account this special texture and the single crystal yield surface of γ-TiAl we conclude that around 700°C the CRSS of super-dislocations is higher than the CRSS of ordinary dislocations. At RT the relation changes to the opposite.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujiwara, T., Nakamura, A., Hosomi, M., Nishitani, S.R., Shirai, Y., Yamaguchi, M.: Phil. Mag. A, 61 (1990) 591606 Google Scholar
2. Seeger, J., Mecking, H.: Scripta metali, mater. 29 (1993) 1318 Google Scholar
3. Clemens, H., Glatz, W., Eberhardt, N. and Martinz, H.-P., these proceedingsGoogle Scholar
4. Clemens, H., Schretter, P., Wurzwallner, K., Bartels, A. and Koeppe, C.; in Structural Intermetallics, eds Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B. and Nathai, M.V., TMS Warrendale, PA (1993) pp. 187194.Google Scholar
5. Clemens, H., Glatz, W., Schretter, P., Koeppe, C., Bartels, A., Behr, R. and Wanner, A.; in Gamma Titanium Aluminides, eds. Kim, Y.-W., Wagner, R. and Yamaguchi, M., TMS, Warrendale, PA (1995) pp. 717726 Google Scholar
6. Koeppe, C., Bartels, A., Clemens, H., Schretter, P., Glatz, W.; Mater. Sci. Eng. A201 (1995) 182193 Google Scholar
7. Hartig, Ch., Fang, X.F., Mecking, H., Dahms, M., Acta Metall. Mater. 40 (1992) 18831894 Google Scholar
8. Mecking, H., Hartig, Ch., Kocks, U.F.: Acta Mater. 44 (1996) 13091321 Google Scholar
9. Bishop, J.F.W., Hill, R.: Phil. Mag. 42 (1951) 12981307 Google Scholar
10. Los Alamos Polycrystal Plasticity Code, Los Alamos Nat. Lab. LA-CC-88–6, Los Alamos, NM 87545, USAGoogle Scholar
11. Matthies, S., Vinel, G.W.: Mat. Sci. Forum 157–162 (1994) 16411646 Google Scholar