Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T09:36:07.014Z Has data issue: false hasContentIssue false

Mechanical and Thermo-Mechanical Protection by Alumina Sol-Gel Coatings

Published online by Cambridge University Press:  26 February 2011

Mark F. Gruninger
Affiliation:
Rutgers University, Center for Ceramics Research, Box 909, Piscataway, N. J., 08854
John B. Wachtman Jr
Affiliation:
Rutgers University, Center for Ceramics Research, Box 909, Piscataway, N. J., 08854
Richard A. Haber
Affiliation:
Rutgers University, Center for Ceramics Research, Box 909, Piscataway, N. J., 08854
Get access

Abstract

Alumina coatings made by the sol-gel process using aluminum sec butox-ide can be made with variable surface area and porosity by firing on dense alumina substrates in the firing range 700 to 1000 C. These coatings are found to have large (over 100 MPa) compressive stresses and to cause a small but significant strengthening of the substrates. Within this firing range the surface area decreases while both the internal stress and strengthening effect increase with increasing firing temperature. Wear rate values are high but decrease with increasing firing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Siemers, P. A. and Mehan, Richard L., Ceramic Engineering and Science Proceedings, 4, 828, (1983).Google Scholar
2. Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics. 2nd edition (John Wiley & Sons, 1975), p. 638.Google Scholar
3. Klein, L. C., Ceramic Engineering & Science Proceedings, 1, 379, (1984).Google Scholar
4. Dislich, H. and Hinz, P., J. Non-Crystalline Solids 48, 11 (1982).Google Scholar
5. Catone, D. L. and Matijevic, E., J. Colloid, and Interface Science, 48, 291 (1974).Google Scholar
6. Yoldas, B. E., Ceramic Bulletin, 54, 286 (1975).Google Scholar
7. Yoldas, B. E., Applied Optics, 21, 2960 (1982).Google Scholar
8. Nikolic, Lj., Bailey, J. E. and Ristic, M. M., Sintering - Theory and Practice (Elsevier Science Publishers, Amsterdam, 1982), p. 168.Google Scholar
9. Lee, B. I. and Hench, L. L., Mat. Res. Soc. Symp Proc. 32, 307 (1984).Google Scholar
10. Martinsen, J., Figat, R. A. and Shafer, M. W., Mat. Res. Soc. Symp. Proc. 32, 145 (1984).Google Scholar
11. Lannutti, J. J. and Clark, D. E., Mat. Res. Symp. Proc. 32, 369 (1984).Google Scholar
12. Salvati, L. and Macey, C. J., Perkin-Elmer Corporation (unpublished).Google Scholar
13. Lawn, B. R. and Fuller, E. R. Jr, Materials, J. Sci., 19, 4061 (1984).Google Scholar
14. Scherer, G. W. and Garino, Terry, J. Am. Ceram. Soc. 68, 216 (1985).Google Scholar
15. Bordia, R. K. and Raj, R., J. Am. Ceram. Soc, 68, 287 (1985).Google Scholar
16. Blau, P., Tribology International, Vol. 15, No. 4, 209 (1982).Google Scholar
17. Wu, C. and Rice, R. W., to be published in Ceramic Engineering and Science Proceedings.Google Scholar
18. Hasselman, D. P. H. and Youngblood, G. E., J. Am. Ceram. Soc. 61, 49 (1978).Google Scholar
19. Gruninger, M. F., Lawn, B. R., and Farabaugh, E. N., to be published.Google Scholar